Pengaruh Variasi Dosis Iradiasi Gamma pada Pemisahan Komponen Penyusun Biomassa Lignoselulosa Sabut Kelapa

Harum Azizah Darojati(1*), Sebastianus Dani Ganesha(2), Dhita Ariyanti(3)
(1) Politeknik Teknologi Nuklir Indonesia
(2) Politeknik Teknologi Nuklir Indonesia BRIN
(3) Politeknik Teknologi Nuklir Indonesia BRIN
(*) Corresponding Author
DOI: http://dx.doi.org/10.25269/jsel.v12i01.359

Abstract

The Effect of Gamma Iradiation Dosage Variation on The Separation of Coconut Coir Lignocellulose Biomass Components

Abstract

Indonesia has the potential for lignocellulosic biomass in the form of coconut coir, which is very abundant. The components of coconut coir are lignocellulosic biomass, which consists of cellulose, hemicellulose, and lignin and can be separated from one another. This study was conducted to determine the effect of variations in the dose of gamma-ray irradiation on the structure of each component so that it was expected that the utilization of coconut coir lignocellulosic biomass could be more comprehensive. The separation was carried out using wet irradiation with a 5% H2O2 solution as the initiator, where 15 grams of coco coir sample was dissolved in 60 ml of 5% H2O2 solution. Gamma irradiation dose variations were 0 kGy, 50 kGy, 100 kGy, 150 kGy, and 200 kGy. Based on the research, the optimal dose to obtain glucose was obtained at an irradiated dose of 100 kGy with a glucose level of 5.09 mg. The optimal gamma irradiation dose for lignin separation is 50 kGy with a lignin separation percentage of 34.95%. Based on the FTIR analysis, it can be seen that as a result of the chemical bond resulting from the separation, there is a decrease in the effect of the gamma IR radiation. This study showed that the separation of lignocellulosic coconut coir biomass using gamma irradiation could produce higher levels of glucose and lignin separation and affect the chemical structure of cellulosic biomass

Keywords

sawdust lignocellulosic biomass, component separation; coconut coir; gamma irradiation; biomassa lignoselulosa; pemisahan komponen; sabut kelapa; iradiasi gamma

Full Text:

PDF

References

Aiman, S. (2016) ‘Pengaruh Ukuran Partikel Biomasa Lignoselulosa pada Pembuatan Bioetanol dan Biobutanol : Tinjauan The Influence of Lignocelulosic Biomass Particle Size on Bioethanol and Biobutanol Production : A Review komponen utama hemiselulosa , selulosa dan biomasa l’, Jurnal Kimia Terapan Indonesia, 18(1), pp. 11–25.

Badan Pusat Statistik (2021) Produksi Tanaman Perkebunan (Ribu Ton), 2019-2021, bps.go.id.

Bodîrlǎu, R. and Teacǎ, C.A. (2009) ‘Fourier transform infrared spectroscopy and thermal analysis of lignocellulose fillers treated with organic anhydrides’, Romanian Reports of Physics, 54(1–2), pp. 93–104.

Chung, B.Y. et al. (2012) ‘Enhanced enzymatic hydrolysis of poplar bark by combined use of gamma ray and dilute acid for bioethanol production’, Radiation Physics and Chemistry, 81(8), pp. 1003–1007. Available at: https://doi.org/10.1016/j.radphyschem.2012.01.001.

Darojati, H.A., Putra, S. and Zulprasetya, F.P. (2019) ‘Pengaruh iradiasi gamma pada konversi biomassa lignoselulosa sabut kelapa menjadi bioetanol’, Jurnal Teknik Kimia dan Lingkungan, 3(2), p. 87. Available at: https://doi.org/10.33795/jtkl.v3i2.121.

Diji, C.J. (2013) ‘Electricity production from biomass in Nigeria: Options, prospects and challenges’, Advanced Materials Research, 824, pp. 444–450. Available at: https://doi.org/10.4028/www.scientific.net/AMR.824.444.

Fauziah, A., Rodiansono, R. and Sunardi, S. (2019) ‘Analisis spektroskopi inframerah transformasi fourier (FTIR) dan perubahan warna lignoselulosa alang-alang (Imperata cylindrica) setelah pretreatment menggunakan asam encer’, Konversi, 8(1), pp. 10–16. Available at: https://doi.org/10.20527/k.v8i1.6506.

Fessenden (1992) Kimia Organik. Jakarta: Erlangga.

García, A. et al. (2009) ‘Characterization of lignins obtained by selective precipitation’, Separation and Purification Technology, 68(2), pp. 193–198. Available at: https://doi.org/10.1016/j.seppur.2009.05.001.

Gonçalves, F.A., Sanjinez-Argandoña, E.J. and Fonseca, G.G. (2011) ‘Utilization of Agro-Industrial Residues and Municipal Waste of Plant Origin for Cellulosic Ethanol Production’, Journal of Environmental Protection, 02(10), pp. 1303–1309. Available at: https://doi.org/10.4236/jep.2011.210150.

Jannah, A.M. and Asip, F. (2015) ‘Bioethanol production from coconut fiber using alkaline pretreatment and acid hydrolysis method’, International Journal on Advanced Science, Engineering and Information Technology, 5(5), pp. 320–322. Available at: https://doi.org/10.18517/ijaseit.5.5.570.

Kassim, M.A. et al. (2016) ‘Irradiation Pretreatment of Tropical Biomass and Biofiber for Biofuel Production’, in Radiation Effects in Materials. InTech. Available at: https://doi.org/10.5772/62728.

Muensri, P. et al. (2011) ‘Effect of lignin removal on the properties of coconut coir fiber/wheat gluten biocomposite’, Composites Part A: Applied Science and Manufacturing, 42(2), pp. 173–179. Available at: https://doi.org/10.1016/j.compositesa.2010.11.002.

Muurinen, E. (2000) Organosolv Pulping. A Review and Distillation Study Related to Peroxyacid Pulping, Academic Dissertation. University of Oulu, Finland.

Orozco, R.S. et al. (2012) ‘Gamma irradiation induced degradation of orange peels’, Energies, 5(8), pp. 3051–3063. Available at: https://doi.org/10.3390/en5083051.

Rajeswara Rao, N. et al. (2015) ‘The effect of gamma irradiation on physical, thermal and antioxidant properties of kraft lignin’, Journal of Radiation Research and Applied Sciences, 8(4), pp. 621–629. Available at: https://doi.org/10.1016/j.jrras.2015.07.003.

Ruslina, S. (2019) PT MAHLIGAI INDOCOCO FIBRE, Potensi Ekspor Sabut Kelapa, Pelakubisnis.com.

Saini, A. et al. (2015) ‘Prospects for Irradiation in Cellulosic Ethanol Production’, Biotechnology Research International, 2015, pp. 1–13. Available at: https://doi.org/10.1155/2015/157139.

Sluiter, A. et al. (2008) ‘Determination of structural carbohydrates and lignin in Biomass - NREL/TP-510-42618’, National Renewable Energy Laboratory, (April 2008), p. 17.

Studer, M.H. et al. (2011) ‘Lignin content in natural populus variants affects sugar release’, Proceedings of the National Academy of Sciences of the United States of America, 108(15), pp. 6300–6305. Available at: https://doi.org/10.1073/pnas.1009252108.

Sun, Y. and Cheng, J. (2002) ‘Hydrolysis of lignocellulosic materials for ethanol production: A review’, Bioresource Technology, 83(1), pp. 1–11. Available at: https://doi.org/10.1016/S0960-8524(01)00212-7.

Tarasov, D., Leitch, M. and Fatehi, P. (2018) ‘Lignin-carbohydrate complexes: Properties, applications, analyses, and methods of extraction: A review’, Biotechnology for Biofuels, 11(1), pp. 1–28. Available at: https://doi.org/10.1186/s13068-018-1262-1.

Torun, M. (2017) ‘Radiation pretreatment of biomass’, Applications of Ionizing Radiation in Materials Processing, pp. 447–460.

Underwood (2014) Analisis Kimia Kuantitatif Edisi III. Jakarta: Erlangga.

Wang, Q. et al. (2010) ‘A rapid method for determination of silicon content in black liquor by UV spectroscopy’, BioResources, 5(4), pp. 2681–2689.

Yin, Y. and Wang, J. (2016) ‘Enhancement of enzymatic hydrolysis of wheat straw by gamma irradiation-alkaline pretreatment’, Radiation Physics and Chemistry, 123, pp. 63–67. Available at: https://doi.org/10.1016/j.radphyschem.2016.02.021.

Zoghlami, A. and Paës, G. (2019) ‘Lignocellulosic Biomass: Understanding Recalcitrance and Predicting Hydrolysis’, Frontiers in Chemistry, 7(December). Available at: https://doi.org/10.3389/fchem.2019.00874.


Article Metrics


Abstract view : 46 times
PDF view : 27 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 JURNAL SELULOSA
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.