Telaah Potensi Penerapan Teknologi Terkini pada Hidrolisis Selulosa dengan Sistem Pengendalian Terintegrasi dalam Proses Bioetanol G2

Anissa Ditia(1), Teuku Beuna Bardant(2), Amaliyah Rohsari Indah Utami(3), Roni Maryana(4*), Yan Irawan(5), Muryanto Muryanto(6), Eka Triwahyuni(7), Yanni Sudiyani(8)
(1) Teknik Fisika, Telkom University, Bandung
(2) Research Center for Chemistry - Indonesian Institute of Sciences
(3) Teknik Fisika, Telkom University, Bandung
(4) Research Center for Chemistry - Indonesian Institute of Sciences
(5) Research Center for Chemistry - Indonesian Institute of Sciences
(6) Research Center for Chemistry - Indonesian Institute of Sciences
(7) Research Center for Chemistry - Indonesian Institute of Sciences
(8) Research Center for Chemistry - Indonesian Institute of Sciences
(*) Corresponding Author
DOI: http://dx.doi.org/10.25269/jsel.v11i01.320

Abstract

Kajian ini merangkum teknologi dan inovasi sistem pengendalian yang berpotensi diterapkan dalam intensifikasi proses hidrolisis selulosa pada produksi bioetanol G2. Telaah dimulai dari perkembangan terbaru intensifikasi produksi bioetanol secara umum. Hidrolisis selulosa adalah tahapan pembeda antara proses bioetanol G2 dan generasi sebelumnya. Perhatian utama dalam intensifikasi hidrolisis selulosa adalah pada bagaimana hidrolisis selulosa terintegrasi dengan
sistem pengendalinya dan integrasi hidrolisis selulosa dengan bagian hulu (pretreatment) dan hilir (penyulingan). Keunikan proses ini adalah durasi kerja yang membutuhkan 48 jam dan viskositas campuran yang tergantung waktu. Bagian akhir telaah ini memetakan potensi penerapan teknologi dan inovasi terbaru yang telah dirangkum. Pemetaan berdasarkan potensi peningkatan efisiensi dan potensi tambahan investasi. Sakarifikasi Very High Gravity (VHG) pada kecepatan pengadukan optimum dan intermitten dinilai sebagai pilihan paling menarik bila intensifikasi dilakukan pada
unit produksi yang telah berdiri. Namun jika intensifikasi untuk rancangan pabrik baru, maka tangki hidrolisis yang dirancang dengan simulasi CFD, dilengkapi dengan sekat (baffles) yang bergerak terkendali, dan rancangan batang pengaduk (impeller) paling cocok menurut simulasi adalah pilihan menarik. Rancangan ini kemudian diintegrasikan dengan sistem pengendali yang mampu memperkirakan perubahan viskositas.

 

Review on Potency of Application Recent Technology in the Integrated Process and Control on Cellulose Hydrolysis in Bioethanol G2 Production Process

Abstract

This review listed current technologies and innovations in the control system which potentially applied in the intensification of cellulose hydrolysis as part of 2nd Generation Bioethanol production process. The review started from the general latest innovations in the 2nd Generation Bioethanol. Cellulose hydrolysis as the main characteristics in the 2nd Generation of Bioethanol required further attention in the intensification. Especially in how to integrate cellulose hydrolysis with its control system and to integrate it with upstream and downstream units. The special requirements in cellulose hydrolysis are 48 hours agitation duration and time-dependent mixture viscosity. At the end of the review, listed technologies were assessed to be applied in the 2nd Generation Bioethanol. The assessment was based on their potency in increasing process efficiency and the potency of required investment if they are applied. A Very High Gravity (VHG) saccharification at optimum intermittent agitation speed was a promising innovation for cellulose hydrolysis if intensification was conducted onto the existing production plant. If intensification is conducted to a plant design, building an agitation tank according to best Computational Fluid Dynamic (CFD) simulation, complemented with controlled moving baffles and best suitable impeller design is a promising design for efficient hydrolysis. This agitation tank was then completed with the advanced available control system, which is capable to adapt the viscosity changes.

Keywords

agitation, sacharification; biomass; viscosity; non Newtonian fluids; pengadukan; sakarifikasi; biomassa; viskositas; fluida non Newtonian

Full Text:

PDF

References

Aljaafreh, A. (2017) ‘Agitation and mixing processes automation using current sensing and reinforcement learning’, Journal of Food Engineering, 203, pp. 53–57. doi: 10.1016/j.jfoodeng.2017.02.001.

Baeyens, J., Kang, Q., Appels, L., Dewil, R., Lv, Y. and Tan, T. (2015) ‘Challenges and opportunities in improving the production of bio-ethanol’, Progress in Energy and Combustion Science, 47, pp. 60–88. doi: 10.1016/j.pecs.2014.10.003.

Baig, K. S. (2020) ‘Interaction of enzymes with lignocellulosic materials: causes, mechanism and influencing factors’, Bioresources and Bioprocessing, 7(1). doi: 10.1186/s40643-020-00310-0.

Bardant, T.B.; Sudiyarmanto, S.; Abimanyu, H.; Hanum, A. K. (2012) ‘Effect of Non Ionic Surfactant Addition to Cellulase Performance in High-Substrate-Loading-Hydrolysis of Palm Oil EFB and Water-Hyacinth’, Indonesia Journal of Chemistry, 13(1), pp. 53–58.

Bardant, T. B., Susanto, H. and Winarni, I. (2017) ‘The RSM-CI Emerging Technology for Enabling Biochemical Process: Ethanol Production from Palm Plantation Biomass Waste in Indonesia’, in Applied Chemistry and Chemical Engineering, Volume 5. Apple Academic Press, pp. 273–302.

Battista, F., Fino, D., Mancini, G. and Ruggeri, B. (2016) ‘Mixing in digesters used to treat high viscosity substrates: The case of olive oil production wastes’, Journal of Environmental Chemical Engineering, 4(1), pp. 915–923. doi: 10.1016/j.jece.2015.12.032.

Binod, P., Satyanagalakshmi, K., Sindhu, R., Janu, K. U., Sukumaran, R. K. and Pandey, A. (2012) ‘Short duration microwave assisted pretreatment enhances the enzymatic saccharification and fermentable sugar yield from sugarcane bagasse’, Renewable Energy, 37(1), pp. 109–116. doi: 10.1016/j.renene.2011.06.007.

Braun, M. W., Rivera, D. E. and Stenman, A. (2001) ‘A “model-on-demand” identification methodology for non-linear process systems’, International Journal of Control, 74(18), pp. 1708–1717. doi: 10.1080/00207170110089734.

Calvo, F., Gómez, J. M., Ricardez-Sandoval, L. and Alvarez, O. (2020) ‘Integrated design of emulsified cosmetic products: A review’, Chemical Engineering Research and Design, 161, pp. 279–303. doi: 10.1016/j.cherd.2020.07.014.

Camacho, O. and Smith, C. A. (2000) ‘Sliding mode control: An approach to regulate nonlinear chemical processes’, ISA Transactions, 39(2), pp. 205–218. doi: 10.1016/s0019-0578(99)00043-9.

Chezeau, B., Danican, A., Fontaine, J. P. and Vial, C. (2020) ‘Characterization of the local hydromechanical stress through experimental and numerical analysis of hydrodynamics under dark fermentation operating conditions’, Chemical Engineering Journal, 382, p. 122748. doi: 10.1016/j.cej.2019.122748.

Chezeau, B. and Vial, C. (2019) ‘Combined effects of digestate viscosity and agitation conditions on the fermentative biohydrogen production’, Biochemical Engineering Journal, 142, pp. 105–116. doi: 10.1016/j.bej.2018.11.016.

Digaitis, R., Thybring, E. E. and Thygesen, L. G. (2020) ‘Investigating the role of mechanics in lignocellulosic biomass degradation during hydrolysis: Part II’, Biotechnology Progress. doi: 10.1002/btpr.3083.

Ebrahimi, M., Caparanga, A. R., Ordono, E. E. and Villaflores, O. B. (2017) ‘Evaluation of organosolv pretreatment on the enzymatic digestibility of coconut coir fibers and bioethanol production via simultaneous saccharification and fermentation’, Renewable Energy, 109, pp. 41–48. doi: 10.1016/j.renene.2017.03.011.

Ein-Mozaffari, F. (2002) Macroscale mixing and dynamic behaviour of agitated pulp stock chests.

Etchells, A.W.; Ford, W.N.; Short, D. G. R. (1987) ‘Mixing of Bingham plastics on an industrial scale’, Inst.Chem.Eng.Prog.Symp.Ser., 108, pp. 1–10.

Frey, M., Violet, L., Richard, D. and Fongarland, P. (2020) ‘Experimental and CFD study of a new one-pot reactor for hybrid catalysis’, Chemical Engineering Journal, 38, p. 122958. doi: 10.1016/j.cej.2019.122958.

Gou, H., Su, R., Huang, R., Qi, W. and He, Z. (2015) ‘Co-optimization of sugar yield and input energy by the stepwise reduction of agitation rate during lignocellulose hydrolysis’, Food and Bioproducts Processing. Institution of Chemical Engineers, 95, pp. 1–6. doi: 10.1016/j.fbp.2015.03.005.

Grossmann, I. E., Calfa, B. A. and Garcia-Herreros, P. (2014) ‘Evolution of concepts and models for quantifying resiliency and flexibility of chemical processes’, Computers and Chemical Engineering, 70, pp. 22–34. doi: 10.1016/j.compchemeng.2013.12.013.

Herrera, M., Camacho, O., Leiva, H. and Smith, C. (2020) ‘An approach of dynamic sliding mode control for chemical processes’, Journal of Process Control, 85, pp. 112–120. doi: 10.1016/j.jprocont.2019.11.008.

Hong, M. S., Severson, K. A., Jiang, M., Lu, A. E., Love, J. C. and Braatz, R. D. (2018) ‘Challenges and opportunities in biopharmaceutical manufacturing control’, Computers and Chemical Engineering, 110, pp. 106–114. doi: 10.1016/j.compchemeng.2017.12.007.

Janiga, G. (2019) ‘Large-eddy simulation and 3D proper orthogonal decomposition of the hydrodynamics in a stirred tank’, Chemical Engineering Science, 201, pp. 132–144. doi: 10.1016/j.ces.2019.01.058.

Kadić, A., Palmqvist, B. and Lidén, G. (2014) ‘Effects of agitation on particle-size distribution and enzymatic hydrolysis of pretreated spruce and giant reed’, Biotechnology for Biofuels, 7(1), pp. 1–10. doi: 10.1186/1754-6834-7-77.

Katsimpouras, C., Zacharopoulou, M., Matsakas, L., Rova, U., Christakopoulos, P. and Topakas, E. (2017) ‘Sequential high gravity ethanol fermentation and anaerobic digestion of steam explosion and organosolv pretreated corn stover’, Bioresource Technology, 244, pp. 1129–1136. doi: 10.1016/j.biortech.2017.08.112.

Kress, P., Nägele, H. J., Oechsner, H. and Ruile, S. (2018) ‘Effect of agitation time on nutrient distribution in full-scale CSTR biogas digesters’, Bioresource Technology, 247, pp. 1–6. doi: 10.1016/j.biortech.2017.09.054.

Liu, Y., Chen, J., Song, J., Hai, Z., Lu, X., Ji, X. and Wang, C. (2019) ‘Adjusting the rheological properties of corn-straw slurry to reduce the agitation power consumption in anaerobic digestion’, Bioresource Technology, 272, pp. 360–369. doi: 10.1016/j.biortech.2018.10.050.

Liu, Y. C., Dunn, D., Lipari, M., Barton, A., Firth, P., Speed, J., Wood, D. and Nagy, Z. K. (2019) ‘A comparative study of continuous operation between a dynamic baffle crystallizer and a stirred tank crystallizer’, Chemical Engineering Journal, 367, pp. 278–294. doi: 10.1016/j.cej.2019.02.129.

Lopez-Ramirez, N., Volke-Sepulveda, T., Gaime-Perraud, I., Saucedo-Castañeda, G. and Favela-Torres, E. (2018) ‘Effect of stirring on growth and cellulolytic enzymes production by Trichoderma harzianum in a novel bench-scale solid-state fermentation bioreactor’, Bioresource Technology, 265, pp. 291–298. doi: 10.1016/j.biortech.2018.06.015.

McDonough, J. R., Oates, M. F., Law, R. and Harvey, A. P. (2019) ‘Micromixing in oscillatory baffled flows’, Chemical Engineering Journal, 361, pp. 508–518. doi: 10.1016/j.cej.2018.12.088.

Mesa, L., López, N., Cara, C., Castro, E., González, E. and Mussatto, S. I. (2016) ‘Techno-economic evaluation of strategies based on two steps organosolv pretreatment and enzymatic hydrolysis of sugarcane bagasse for ethanol production’, Renewable Energy, 86, pp. 270–279. doi: 10.1016/j.renene.2015.07.105.

Mohideen, M. J., Perkins, J. D. and Pistikopoulos, E. N. (1997) ‘Robust stability considerations in optimal design of dynamic systems under uncertainty’, Journal of Process Control, 7(5), pp. 371–385. doi: 10.1016/S0959-1524(97)00014-0.

Montgomery, L. F. R., Schopp, T., Fuchs, W. and Bochmann, G. (2016) ‘Design, calibration and validation of a large lab-scale system for measuring viscosity in fermenting substrate from agricultural anaerobic digesters’, Biochemical Engineering Journal, 115, pp. 72–79. doi: 10.1016/j.bej.2016.08.009.

Mussatto, S. I., Dragone, G., Fernandes, M., Milagres, A. M. F. and Roberto, I. C. (2008) ‘The effect of agitation speed, enzyme loading and substrate concentration on enzymatic hydrolysis of cellulose from brewer’s spent grain’, Cellulose, 15(5), pp. 711–721. doi: 10.1007/s10570-008-9215-7.

Nejati, A., Shahrokhi, M. and Mehrabani, A. (2012) ‘Comparison between backstepping and input-output linearization techniques for pH process control’, Journal of Process Control, 22(1), pp. 263–271. doi: 10.1016/j.jprocont.2011.08.001.

Nguyen, T. S., Hoang, N. H., Hussain, M. A. and Tan, C. K. (2019) ‘Tracking-error control via the relaxing port-Hamiltonian formulation: Application to level control and batch polymerization reactor’, Journal of Process Control, 80, pp. 152–166. doi: 10.1016/j.jprocont.2019.05.014.

Nitzsche, R., Budzinski, M. and Gröngröft, A. (2016) ‘Techno-economic assessment of a wood-based biorefinery concept for the production of polymer-grade ethylene, organosolv lignin and fuel’, Bioresource Technology, 200, pp. 928–939. doi: 10.1016/j.biortech.2015.11.008.

Noraida Abd Rahim, S., Sulaiman, A., Halim Ku Hamid, K., Aini Edama, N. and Samsu Baharuddin, A. (2015) ‘Effect of Agitation Speed for Enzymatic Hydrolysis of Tapioca Slurry Using Encapsulated Enzymes in an Enzyme Bioreactor’, International Journal of Chemical Engineering and Applications, 6(1), pp. 38–41. doi: 10.7763/ijcea.2015.v6.447.

Nørregaard, A., Bach, C., Krühne, U., Borgbjerg, U. and Gernaey, K. V. (2019) ‘Hypothesis-driven compartment model for stirred bioreactors utilizing computational fluid dynamics and multiple pH sensors’, Chemical Engineering Journal, 356, pp. 161–169. doi: 10.1016/j.cej.2018.08.191.

Overend, R.P.; Chornet, E. and Gascoigne, J. A. (1987) ‘Fractionation of Lignocellulosics by Steam-Aqueous Pretreatments’, Philosophy of Transport, Royal Society Association, 321, pp. 523–536.

Özkan, G., Hapoǧlu, H. and Alpbaz, M. (2006) ‘Non-linear generalised predictive control of a jacketed well mixed tank as applied to a batch process - A polymerisation reaction’, Applied Thermal Engineering, 26(7), pp. 720–726. doi: 10.1016/j.applthermaleng.2005.09.008.

Pérez-Pimienta, J. A., Vargas-Tah, A., López-Ortega, K. M., Medina-López, Y. N., Mendoza-Pérez, J. A., Avila, S., Singh, S., Simmons, B. A., Loaces, I. and Martinez, A. (2017) ‘Sequential enzymatic saccharification and fermentation of ionic liquid and organosolv pretreated agave bagasse for ethanol production’, Bioresource Technology, 225, pp. 191–198. doi: 10.1016/j.biortech.2016.11.064.

Pistikopoulos, E. N., Diangelakis, N. A., Oberdieck, R., Papathanasiou, M. M., Nascu, I. and Sun, M. (2015) ‘PAROC - An integrated framework and software platform for the optimisation and advanced model-based control of process systems’, Chemical Engineering Science, 136, pp. 115–138. doi: 10.1016/j.ces.2015.02.030.

Porru, M. and Özkan, L. (2019) ‘Simultaneous design and control of an industrial two-stage mixed suspension mixed product removal crystallizer’, Journal of Process Control, 80, pp. 60–77. doi: 10.1016/j.jprocont.2019.04.011.

Rafiei, M. and Ricardez-Sandoval, L. A. (2020) ‘New frontiers, challenges, and opportunities in integration of design and control for enterprise-wide sustainability’, Computers and Chemical Engineering, 132, p. 106610. doi: 10.1016/j.compchemeng.2019.106610.

Ricardez-Sandoval, L. A., Budman, H. M. and Douglas, P. L. (2009) ‘Integration of design and control for chemical processes: A review of the literature and some recent results’, Annual Reviews in Control, 33(2), pp. 158–171. doi: 10.1016/j.arcontrol.2009.06.001.

Ricardez Sandoval, L. A., Budman, H. M. and Douglas, P. L. (2008) ‘Simultaneous design and control of processes under uncertainty: A robust modelling approach’, Journal of Process Control, 18(7–8), pp. 735–752. doi: 10.1016/j.jprocont.2007.11.006.

Romaní, A., Ruiz, H. A., Teixeira, J. A. and Domingues, L. (2016) ‘Valorization of Eucalyptus wood by glycerol-organosolv pretreatment within the biorefinery concept: An integrated and intensified approach’, Renewable Energy, 95, pp. 1–9. doi: 10.1016/j.renene.2016.03.106.

Saeed, S. and Ein-Mozaffari, F. (2008) ‘Using dynamic tests to study the continuous mixing of xanthan gum solutions’, Journal of Chemical Technology & Biotechnology, 83(4), pp. 559–568.

Salapa, I., Katsimpouras, C., Topakas, E. and Sidiras, D. (2017) ‘Organosolv pretreatment of wheat straw for efficient ethanol production using various solvents’, Biomass and Bioenergy, 100, pp. 10–16. doi: 10.1016/j.biombioe.2017.03.011.

Sharifzadeh, M. (2013) An Overview of Process Systems Engineering Approaches for Process Intensification: State of the Art, Chemical Engineering Research and Design. Institution of Chemical Engineers. doi: 10.1016/j.cherd.2013.05.007.

Shu, L., Yang, M., Zhao, H., Li, T., Yang, L., Zou, X. and Li, Y. (2019) ‘Process optimization in a stirred tank bioreactor based on CFD-Taguchi method: A case study’, Journal of Cleaner Production, 230, pp. 1074–1084. doi: 10.1016/j.jclepro.2019.05.083.

Da Silva, A. S. A., Espinheira, R. P., Teixeira, R. S. S., De Souza, M. F., Ferreira-Leitão, V. and Bon, E. P. S. (2020) ‘Constraints and advances in high-solids enzymatic hydrolysis of lignocellulosic biomass: A critical review’, Biotechnology for Biofuels. BioMed Central, 13(1), pp. 1–28. doi: 10.1186/s13068-020-01697-w.

Szilágyi, B., Borsos, Á., Pal, K. and Nagy, Z. K. (2019) ‘Experimental implementation of a Quality-by-Control (QbC) framework using a mechanistic PBM-based nonlinear model predictive control involving chord length distribution measurement for the batch cooling crystallization of L-ascorbic acid’, Chemical Engineering Science, 195, pp. 335–346. doi: 10.1016/j.ces.2018.09.032.

Tian, L., Shen, F., Yuan, H., Zou, D., Liu, Y., Zhu, B. and Li, X. (2014) ‘Reducing agitation energy-consumption by improving rheological properties of corn stover substrate in anaerobic digestion’, Bioresource Technology, 168, pp. 86–91. doi: 10.1016/j.biortech.2014.03.023.

Tian, Y., Demirel, S. E., Hasan, M. M. F. and Pistikopoulos, E. N. (2018) ‘An overview of process systems engineering approaches for process intensification: State of the art’, Chemical Engineering and Processing - Process Intensification, 133, pp. 160–210. doi: 10.1016/j.cep.2018.07.014.

Tian, Y. and Pistikopoulos, E. N. (2019) ‘Synthesis of operable process intensification systems: advances and challenges’, Current Opinion in Chemical Engineering, pp. 1–7. doi: 10.1016/j.coche.2018.12.003.

Valdez-Navarro, Y. I. and Ricardez-Sandoval, L. A. (2019) ‘Integration between dynamic optimization and scheduling of batch processes under uncertainty: A back-off approach’, IFAC-PapersOnLine, 52(1), pp. 655–660. doi: 10.1016/j.ifacol.2019.06.137.

Weinwurm, F., Turk, T., Denner, J., Whitmore, K. and Friedl, A. (2017) ‘Combined liquid hot water and ethanol organosolv treatment of wheat straw for extraction and reaction modeling’, Journal of Cleaner Production, 165, pp. 1473–1484. doi: 10.1016/j.jclepro.2017.06.215.

Xu, Z., Yuan, H. and Li, X. (2021) ‘Anaerobic bioconversion efficiency of rice straw in continuously stirred tank reactor systems applying longer hydraulic retention time and higher load: One-stage vs. Two-stage’, Bioresource Technology, 321(October), p. 124206. doi: 10.1016/j.biortech.2020.124206.

Yousefifar, A., Farid, M. M., Gapes, D. J. and Young, B. R. (2020) ‘A mass transfer study of the wet oxidation of cellulose’, Chemical Engineering Journal, 384, p. 123326. doi: 10.1016/j.cej.2019.123326.

Zhou, H., Ying, Z., Cao, Z., Liu, Z., Zhang, Z. and Liu, W. (2020) ‘Feeding control of anaerobic co-digestion of waste activated sludge and corn silage performed by rule-based PID control with ADM1’, Waste Management, 103, pp. 22–31. doi: 10.1016/j.wasman.2019.12.021.


Article Metrics


Abstract view : 76 times
PDF view : 67 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 JURNAL SELULOSA
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.