Review: Pembuatan Serat Rayon

Reynaldo Biantoro(1*), Chandra Apriana Purwita(2)
(1) Balai Besar Pulp dan Kertas
(2) Balai Besar Pulp dan Kertas
(*) Corresponding Author
DOI: http://dx.doi.org/10.25269/jsel.v9i02.273

Abstract

Serat sintetis dari minyak bumi memiliki posisi penting dalam produk tekstil. Lebih dari 50% produksi serat dunia didominasi oleh serat sintetik. Meskipun serat sintetik lebih murah, produktivitasnya tinggi, dan lebih tahan lama tetapi serat tersebut tidak dapat terurai secara alami dan proses pembuatannya menggunakan bahan yang dapat merusak lingkungan dan mengancam kesehatan. Meningkatnya kesadaran terhadap isu-isu terkait ekologi dan lingkungan telah mendorong pencarian solusi alternatif bahan baku dan pengembangan metode pembuatan serat yang ramah lingkungan. Serat regenerasi merupakan jenis serat semisintetik yang dibuat dari hasil regenerasi selulosa yang menggunakan bahan baku terbarukan yaitu kayu dan nonkayu yang diproses lebih lanjut menjadi dissolving pulp. Serat ini lebih ramah lingkungan karena lebih mudah terdegradasi. Metode regenerasi serat selulosa lebih berkelanjutan dibandingkan penggunaan bahan baku minyak bumi yang ketersediannya terbatas. Dalam makalah ini dipaparkan sejumlah metode pembuatan serat rayon untuk tekstil menggunakan proses konvensional hingga proses alternatif yang lebih ramah lingkungan. Proses tersebut antara lain proses nitrat, cuproammonium, asetat, viskosa, lyocell, larutan ionik, modal, dan karbamat. Tujuan makalah ini adalah untuk memberikan informasi komprehensif mengenai berbagai proses pembuatan serat rayon serta keunggulan dan kelemahan yang menyertainya, karakteristik dan sifat serat yang diperoleh, dan metode terbaru seperti lyocell dan larutan ionik memiliki dampak lingkungan yang relatif rendah sehingga memiliki potensi untuk dikembangkan.

 

Review: Making Rayon Fiber

Abstract

Synthetic fibers from petroleum have an important position in textile products. More than 50% of the world’s fiber production is dominated by synthetic fibers. Although synthetic fibers are cheaper, high productivity, and more durable, they cannot biodegrade naturally and the manufacturing process uses materials that can damage the environment and threaten health. Increased awareness of issues related to ecology and the environment has
led to the search for alternative solutions for new raw materials and the development of environmentally friendly fiber making process. Regenerated fiber is a type of semisynthetic fiber made from cellulose regeneration using renewable raw materials such as wood and non-wood which are further processed into dissolving pulp. This fiber is more environmentally friendly because it is more easily degraded. Regenerated fiber methods are more sustainable than the use of petroleum raw materials which have limited availability. In this paper, a number of methods for making rayon fibers for textiles are presented using conventional processes to alternative processes that are more environmentally friendly. These processes include nitrate, cuproammonium, acetate, viscose, lyocell, ionic solution, modal, and carbamate. The purpose of this paper is to provide comprehensive information on the various processes of making rayon fibers as well as the advantages and disadvantages, the characteristics and properties of the fibers, and the latest methods such as lyocells and ionic solutions have relatively low environmental impact so that they have the potential to be developed.


Keywords: dissolving pulp, rayon fiber, cellulose, textile, viscose



 

 

Keywords

dissolving pulp; serat rayon; selulosa; tekstil; viskosa

Full Text:

PDF

References

Ali, E. M. T., Iqbal, M. A., Hossain, S. . M., Alam, M. K. and Molla, J. B. (2018) ‘Study on Blending Effect of Cotton with Viscose for Increasing Yarn Properties’, DIU Journal of Science and Technology, 13(1).

Andemars, S. G., Silk, C., Bernigaud, L. H., Despeissis, L., Cross, C. F., Bevan, E. J., Beadle, C., Rayon, V., Courtauld, S. and Corporation, A. V. (2018) ‘Rayon’, pp. 195– 197. doi: 10.1007/978-3-319-78766-4.

Bajpai, V., Bajpai, S., Jha, M. K., Dey, A. and Ghosh, S. (2011) ‘Microbial Adherence on Textile Materials : A Review’, Journal of Environmental Research & Development, 5(3), pp. 666–672.

Baker, I. (2018) Fifty Materials That Make the World,Springer Nature. Springer International Publishing. doi: 10.1007/978-3-319-78766-4.

Basit, A., Latif, W., Ashraf, M., Rehman, A., Iqbal, K., Maqsood, H. S., Jabbar, A. and Baig, S. A. (2019) ‘Comparison of Mechanical and Thermal Comfort Properties of Tencel Blended with Regenerated Fibers and Cotton Woven Fabrics’, AUTEX Research Journal, 19(1), pp. 80–85. doi: 10.1515/aut-2018-0035.

Cai, T., Zhang, H., Guo, Q., Shao, H. and Hu, X. (2009) ‘Structure and Properties of Cellulose Fibers from Ionic Liquids’, Journal of Applied

Polymer Science, 115, pp. 1047–1053. doi: 10.1002/app.31081.

Chen, J. (2015) Synthetic Textile Fibers: Regenerated Cellulose Fibers, Textiles and Fashion. Elsevier Ltd. doi: 10.1016/B978-1-84569-931-4.00004-0.

Chen, S., Zheng, Q., Ye, G. and Zheng, G. (2006) ‘Fire-Retardant Properties of the Viscose Rayon Containing Alkoxycyclotriphosphazene’, Journal of Applied Polymer Science, 102, pp. 698–702. doi: 10.1002/app.24217.

Cuissinat, C., Navard, P. and Heinze, T. (2008) ‘Swelling and Dissolution of Cellulose, Part V: Cellulose Derivatives Fibres in Aqueous Systems and Ionic Liquids’, Cellulose, 15, pp. 75–80. doi: 10.1007/s10570-007-9159-3.

El-Kheir, A. A. A., Ezzat, M., Bassiouny, F. and ElGabry, L. K. (2018) ‘Development of Some Functional Properties on Viscose Fabrics

Using Nano Kaolin’, Cellulose. Springer Netherlands, 25(8), pp. 4805–4818. doi: 10.1007/s10570-018-1865-5.

Freitas, A., Zhang, G. and Mathews, R. (2017) ‘Water Footprint Assessment of Polyester and Viscose and Comparison to Cotton’, Water

Footprint Network, p. 89. Available at: https:// waterfootprint.org/media/downloads/WFA_Polyester_and__Viscose_2017.pdf.

Fu, F., Xu, M., Wang, H., Wang, Y., Ge, H. and Zhou, J. (2015) ‘Improved Synthesis of Cellulose Carbamates with Minimum Urea Based on an Easy Scale-up Method’, ACS Sustainable Chemistry & Engineering. doi: 10.1021/acssuschemeng.5b00219.

Fu, F., Yang, Q., Zhou, J., Hu, H., Jia, B. and Zhang, L. (2014) ‘Structure and Properties of Regenerated Cellulose Filaments Prepared from Cellulose Carbamate − NaOH/ZnO Aqueous Solution’, ACS Sustainable

Chemistry & Engineering, 2, pp. 2604–2612. doi: 10.1021/sc500559g.

Hämmerle, F. M. (2011) ‘The Cellulose Gap (The Future of Cellulose Fibres)’, Lenzinger Berichte, 89, pp. 12–21.

Hermanutz, F., Gahr, F., Uerdingen, E., Meister, F. and Kosan, B. (2008) ‘New Developments in Dissolving and Processing of Cellulose in Ionic Liquids’, Macromol. Symp., 262, pp. 23–27. doi: 10.1002/masy.200850203.

Hummel, M., Michud, A., Ma, Y., Roselli, A., Stepan, A., Hellstén, S., Asaadi, S. and Sixta, H. (2019) ‘High Performance Lignocellulosic Fibers Spun from Ionic Liquid Solution’, in Cellulose Science and Technology: Chemistry, Analysis, and Applications, First Edition, pp.

–370. doi: 10.1002/9781119217619.ch14.

Jiang, G., Huang, W., Li, L., Wang, X., Pang, F., Zhang, Y. and Wang, H. (2012) ‘Structure and Properties of Regenerated Cellulose Fibers from Different Technology Processes’, Carbohydrate Polymers. Elsevier Ltd.,

(3), pp. 2012–2018. doi: 10.1016/j. carbpol.2011.10.022.

Kauffman, G. B. (1993) ‘Rayon: The First SemiSynthetic Fiber Product’, Journal of Chemical Education, 70(11), pp. 887–893. doi: 10.1021/ ed070p887.

Keshipour, S. and Maleki, A. (2019) ‘Modification of Cellulose’, in Polymers and Polymeric Composites: A Reference Series. Springer

Nature Switzerland, pp. 436–473. doi: 10.1007/978-3-319-77830-3_17.

Khalil, H. P. S. A., Davoudpour, Y., Bhat, A. H., Rosamah, E. and Tahir, P. M. (2015) ‘Electrospun Cellulose Composite Nanofibers’, in Handbook of Polymer Nanocomposites. Processing, Performance and Application. Springer-Verlag Berlin Heidelberg, pp. 191–227. doi: 10.1007/978-3-642-45232-1_61.

Kopcke, V. (2010) Conversion of Wood and Nonwood Paper-grade Pulps to Dissolving-grade Pulps, Doctoral Thesis. Royal Institute of

Technology Sweden.

Kosan, B., Michels, C. and Meister, F. (2008) ‘Dissolution and Forming of Cellulose with Ionic Liquids’, Cellulose, 15, pp. 59–66. doi: 10.1007/s10570-007-9160-x.

Kumar, H. and Christopher, L. P. (2017) ‘Recent Trends and Developments in Dissolving Pulp Production and Application’, Cellulose. Springer Netherlands. doi: 10.1007/s10570-

-1285-y.

Latif, W., Basit, A., Rehman, A., Ashraf, M., Iqbal, K., Baig, S. A. and Maqsood, S. (2018) ‘Study of Mechanical and Comfort Properties of

Modal with Cotton and Regenerated Fibers Blended Woven Fabrics’, Journal of Natural Fibers. Taylor & Francis, pp. 1–10. doi: 10.1080/15440478.2018.1441084.

Law, R. C. (2004) ‘Application of Cellulose Acetate’, Macromol. Symp., 208, pp. 255– 265. doi: 10.1002/masy.200450410.

Lehmann, A. (2015) ‘Dissolution and Processing of Cellulose from Alkaline Media - Carbamate and Viscose System’, COST FP1205 Training School, pp. 1–66.

Li, D., Sevastyanova, O. and Ek, M. (2012) ‘Pretreatment of Softwood Dissolving Pulp with Ionic Liquids’, Holzforschung, 66, pp. 935–943. doi: 10.1515/hf-2011-0180.

Mamun, M. H., Mostofa, A., Hossain, M. A., Khan, M., Zakaria, M. and Yeasmin, M. S. (2017) ‘Effect of Reactive Groups of Reactive Dyes

on Dyeing of Modal Fabrics’, International Journal of Textile Science, 6(6), pp. 158–164. doi: 10.5923/j.textile.20170606.04.

Manian, A. P., Pham, T. and Bechtold, T. (2018) ‘Regenerated Cellulosic Fiber’, in Handbook of Properties of Textile and Technical Fibres. Elsevier, pp. 329–343. doi: 10.1016/B978-0-08-101272-7.00010-9.

Mohd, N., Draman, S. F. S., Salleh, M. S. N. and Yusof, N. B. (2017) ‘Dissolution of Cellulose in Ionic Liquid : A Review’, Proceedings of

the 6th International Advances in Applied Physics and Materials Science Congress & Exhibition, pp. 1–14. doi: 10.1063/1.4975450.

Moses, J. J. and Gnanapriya (2016) ‘A Study on Modal Fabric using Formic Acid Treatment for K/S, SEM and Fourier Transform Infrared Spectroscopy’, Oriental Journal of Chemistry, 32(2), pp. 1099–1110. doi: 10.13005/ojc/320235.

Noerati, Gunawan, Ichwan, M. and Sumihartati, A. (2013) Teknologi Tekstil, Bahan Ajar Pendidikan dan Pelatihan Guru. Sekolah Tinggi Teknologi Tekstil.

Ozturk, H. B. and Bechtold, T. (2008) ‘Splitting Tendency of Cellulosic Fibers . Part 3 : Splitting Tendency of Viscose and Modal Fibers’, Cellulose, 15, pp. 101–109. doi: 10.1007/s10570-007-9149-5.

Pinkert, A., Marsh, K. N. and Phang, S. (2010) ‘Reflections on the Solubility of Cellulose’, Ind. Eng. Chem. Res., 49, pp. 11121–11130.

doi: 10.1021/ie1006596.

Purwita, C. A. and Sugesty, S. (2018) ‘Pembuatan dan Karakterisasi Dissolving Pulp Serat Panjang dari Bambu Duri (Bambusa blumeana)’, Jurnal Selulosa, 8(1), pp. 21–32. doi: 10.25269/jsel.v8i01.232.

Qi, H. (2017) Novel Functional Materials Based on Cellulose, SpringerBriefs in Applied Sciences and Technology. doi: 10.1007/978-

-319-49592-7.

Ramamoorthy, S. K., Skrifvars, M. and Persson, A. (2015) ‘A Review of Natural Fibers Used in Biocomposites : Plant, Animal and Regenerated Cellulose Fibers’, Polymer Reviews, 55, pp. 107–162. doi: 10.1080/15583724.2014.971124.

Rosenau, T., Potthast, A., Sixta, H. and Kosma, P. (2001) ‘The Chemistry of Side Reactions and Byproduct Formation in the System NMMO/

Cellulose (Lyocell Process)’, Progress in Polymer Science, 26, pp. 1763–1837. doi: 10.1016/S0079-6700(01)00023-5.

Rustemeyer, P. (2004) ‘History of CA and Evolution of the Markets’, Macromol. Symp., 208, pp. 1–6. doi: 10.1002/masy.200450401.

Sango, C., Kaur, P., Bhardwaj, N. K. and Sharma, J. (2018) ‘Bacterial Cellulase Treatment for Enhancing Reactivity of Pre-Hydrolysed Kraft Dissolving Pulp for Viscose’, 3 Biotech. Springer Berlin Heidelberg, 8(271). doi: 10.1007/s13205-018-1293-0.

Sayyed, A. J., Deshmukh, N. A. and Pinjari, D. V (2019) ‘A Critical Review of Manufacturing Processes Used in Regenerated Cellulosic Fibres : Viscose, Cellulose Acetate, Cuprammonium, LiCl/DMAc , Ionic Liquids , and NMMO Based Lyocell’, Cellulose. Springer Netherlands,

, p. 28. doi: 10.1007/s10570-019-02318-y.

Shen, L., Worrell, E. and Patel, M. K. (2010) ‘Environmental Impact Assessment of Man-Made Cellulose Fibres’, Resources, Conservation & Recycling. Elsevier B.V., 55(2), pp. 260–274. DOI: 10.1016/j. resconrec.2010.10.001.

Singh, Z. and Bhalla, S. (2017) ‘Toxicity of Synthetic Fibres & Health’, Advance Research in Textile Engineering, 2(1), pp. 1–5. doi: 10.26420/advrestexteng.2017.1012.

Sixta, H. (2006) Handbook of Pulp, Wiley - VCH. doi: 10.1002/9783527619887.

Sixta, H. (2016) ‘Postgraduate Course on Cellulose Chemistry Dissolving Pulps’. Aalto University School of Chemical Technology, p. 64.

Sixta, H., Iakovlev, M., Testova, L., Roselli, A., Hummel, M., Borrega, M., Heiningen, A. van, Froschauer, C. and Schottenberger, H. (2013) ‘Novel Concepts of Dissolving Pulp Production’, Cellulose, 20, pp. 1547–1561. doi: 10.1007/s10570-013-9943-1.

Sixta, H., Michud, A., Hauru, L., Asaadi, S., Ma, Y., King, A. W. T., Kilpeläinen, I., Hummel, M., Ma, Y., Cross, C., Bevan, E. J. and Beadle, C. (2015) ‘Ioncell-F : A HighStrength Regenerated Cellulose Fibre’,

Nordic Pulp and Paper Research Journal, 30(1), pp. 43–57. doi: 10.3183/npprj-2015-30-01-p043-057.

Strunk, P. (2012) Characterization of Cellulose Pulps and The Influence of Their Properties on The Process and Production of Viscose and Cellulose Ethers. Umea University.

Suwantong, O. and Supaphol, P. (2015) ‘Applications of Cellulose Acetate Nanofiber Mats’, in Handbook of Polymer Nanocomposites. Processing, Performance and Application. Springer-Verlag Berlin

Heidelberg, pp. 355–368. doi: 10.1007/978-3-642-45232-1_70.

Truscott, L., Tan, E. and Opperskalski, S. (2018) ‘Preferred Fiber & Materials Market Report 2018’, Textile Exchange, pp. 1–96. Available

at: https://textileexchange.org.

Ullmann, F., Gerhartz, W., Yamamoto, Y. S., Campbell, F. T., Pfefferkorn, R., Rounsaville, J. F. and Ullmann, F. (2011) Ullmann’s

Encyclopedia of Industrial Chemistry, Wiley - VCH. doi: 10.1002/14356007.

Venkatesan, H. and Periyasamy, A. P. (2017) ‘EcoFibers in the Textile Industry’, in Handbook of Ecomaterials. Springer International Publishing AG. doi: 10.1007/978-3-319-48281-1_25-1.

Wang, S., Lu, A. and Zhang, L. (2016) ‘Recent Advances in Regenerated Cellulose Materials’, Progress in Polymer Science. Elsevier Ltd, 53, pp. 169–206. doi: 10.1016/j.progpolymsci.2015.07.003.

Woodings, C. (2001) Regenerated Cellulose Fibres, Woodhead Publishing Ltd and CRC Press LLC. Woodhead Publishing Ltd and CRC Press LLC. doi: 10.1533/9781855737587.

Yu, M. and Wan, J. (2017) ‘Environmental Friendly Development of Regenerated Cellulose Fiber Production’, Asia-Pacific Engineering and Technology Conference (APETC ), pp. 760–765.

Zhang, C., Ren, J., Ma, Y., Liu, Y., Tang, Y. and Qin, S. (2018) ‘Preparation and Adsorption Properties of Amphoteric Viscose Fiber’,

Iranian Polymer Journal. Springer Berlin Heidelberg, 27(9), pp. 635–644. doi: 10.1007/s13726-018-0640-7.

Zhang, H., Zhang, H., Tong, M., Shao, H. and Hu, X. (2008) ‘Comparison of the Structures and Properties of Lyocell Fibers from High Hemicellulose Pulp and High AlphaCellulose Pulp’, Journal of Applied Polymer Science, 107, pp. 636–641. doi: 10.1002/app.27129.

Zhang, S., Chen, C., Duan, C., Hu, H., Li, H., Li, J., Liu, Y., Ma, X., Stavik, J. and Ni, Y. (2018) ‘Regenerated Cellulose by the Lyocell Process, a Brief Review of the Process and Properties’, BioResources, 13(2), pp. 4577–4592.


Article Metrics


Abstract view : 82 times
PDF view : 106 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 JURNAL SELULOSA
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.