ULTRAVIOLET MUTAGENESIS OF LOCAL ISOLATE Trichoderma sp. T065 FOR IMPROVING CELLULASES ACTIVITY (Mutagenesis Isolat Lokal Trichoderma sp. T065 menggunakan Ultraviolet untuk meningkatkan Aktivitas Selulase)

Trisanti Anindyawati(1*), Eddy Jusuf(2), Haznan Abimanyu(3)
(1) Research Center for Biotechnology - LIPI
(2) Research Center for Biotechnology - LIPI
(3) Research Center for Chemistry- LIPI
(*) Corresponding Author
DOI: http://dx.doi.org/10.25269/jsel.v6i01.65

Abstract

Mutagenesis of indigenous fungal isolates Trichoderma sp. T065 was achieved by UV light in a laminar air flow and UV crosslinker to increase cellulase activity. Thirty-four mutants were tested for their growth capacity in mineral agar with several carbon sources: Whatman filter paper no.1, 1% carboxymethylcellulose (CMC), 2% cellulose powder, 1% Avicel and 4% delignified oil palm empty fruit bunches (DOPEFB) with granule size of 200 mesh. Three mutants (UV-1.1, 1.2-UV and UV-1.3) showed bigger growth zone on cellulose substrate of 4% DOPEFB than that of wild type Trichoderma sp. T065. The highest cellulase activities were 0.65 FPU/mL and 0.57 FPU/mL from UV-1.1 and UV-1- 3, respectively higher than wild type that is equal to 0.038 FPU/mL.

Keywords: Trichoderma sp. T065, mutations, UV light, carbon source, cellulase activity





ABSTRAK


Mutagenesis isolat lokal kapang Trichoderma sp. T065 dilakukan dengan sinar UV pada laminar air flow dan UV crosslinker untuk meningkatkan aktivitas selulase. Tiga puluh empat kapang mutan diuji kapasitas pertumbuhannya pada mineral agar dengan beberapa jenis sumber karbon yaitu kertas saring Whatman no.1, 1% carboxymethylcellulose (CMC), 2% serbuk selulosa, 1% avicel dan 4% tandan kosong sawit (TKS) dengan ukuran granula 200 mesh. Tiga mutan (UV-1.1, UV-1.2 dan UV- 1.3) mempunyai zona pertumbuhan yang lebih besar pada substrat selulosa dengan sumber karbon 4% TKS daripada isolat asli Trichoderma sp. T065. Aktivitas selulase tertinggi adalah 0,65 FPU/mL dan 0,57 FPU/mL berturut-turut dari mutan UV-1.1 dan UV-1.3 yang lebih tinggi dari isolat aslinya yaitu 0,038 FPU/mL.

Kata kunci : Trichoderma sp. T065, mutasi, sinar UV, sumber karbon, aktivitas selulase

 

 

Full Text:

PDF

References

Arun, P., Suhas, V. B., Naveen, S., Ravishanka, H. N. (2014). Study on the synergistic action of cellulase systems from Trichoderma and

Aspergillus mutants on carboxy methyl cellulose. The Scietech J. 1(1), 25-28

Awad, G., Florence, M., Yannick, C., Lebrihi A. 2005. Characterization and regulation of new secondary metabolites from Aspergillus ochraceus M18 obtained by UV mutagenesis. Can. J. Microbiol. 51, 59-67

Cui,Y.Q., Ouwenland, J.N.W., Van Der Lans, R.G.J.M., Giuseppin, M.L.F., Luyben, K.C.A.M. 1998. Aspects of the use of complex media for submerged fermentation of Aspergillus awamori. Enzyme Microb. Technol. 23, 168 –77

De Olivera, M.M.Q., Grigorevski-Lima, A.L.G. Fanco-Cirigliano, M.N., do Nascimento, R.P., da Silva Bon E.P., Coelho, R.R.R. 2014. Trichoderma atroviride 102C1 mutant: A high endoxylanase producer for assisting

lignocellulosic material degradation. J. Microb. Biochem. Technol. 6(5), 236-241

De Sousa, T.M.M., Gorsche, R., Rassinger, A., Pocas- Fonceca, M.J., Mach R.L., MachAigner, A.R. 2014. A Truncated form of the carbon catabolite repressor 1 increases cellulase production in Trichoderma reesei. Biotechnol. for Biofuels 7:129, 1-12

Domingues, F.C, Queiroz, J.A., Cabral, J.M.S., Fonseca, L.P. 2000. The influence of culture conditions on mycelial structure and cellulase production by Trichoderma reesei Rut C-30 Enzyme Microb. Technol. 26, 394–401

Estubauer, H., Steiner, W., Labudova, I., Hermann, A., Hayn, M. 1991. Production of cellulase in laboratory and pilot scale. Biores. Technol. 36, 51-65.

Fahrurrozi, Ratnakomala, S., Anindyawati, T., Lisdiyanti, P. Sukara, E. 2010. Rapid assesment of diverse Trichodermal isolatea of Indonesian origin for cellulase production. Ann. Bogorienses 14 (1), 39-44

Fang, H., Zhao, C., Song, X-Y., Chen, M., Chang, Z., Chu, J. 2013. Enhanced cellulolytic enzyme production by synergism between Trichoderma reesei RUT-C30 and Aspergillus niger NL02 and by the addition of surfactans. Biotechnol. and Bioprocess Eng. 18, 390-398

FAOSTAT, 2006. Statistical data base. http://faostat.fao.org

Gresik, M., Kolarovaand, M., Farkas, U. 1991. Hyperpolarization and intracellular acidification in Trichoderma viridae as a response to illumination. J. Gen. Microbiol. 137, 2605-2609

Gusakov, A.V. 2011. Alternatives to Trichoderma reesei in biofuel production. Trends in Biotechnol. 29 (9), 419-425.

Jun, H., Bing, Y., Keying, Z., Xuemei, D., Daiwen, C. 2009. Strain improvement of Trichoderma reesei Rut C-30 for increased cellulase production. Indian J. Microbiol. 49, 188-195

Kovacs, K., Megyeri, L., Szakacs, G., Kubicek, C.P., Galbe, M., Zacchi, G.

Trichoderma atroviridae mutant with enhanced production of cellulae and β-glucosidase. Enzyme and Microb. Technol. 43, 48-55

Lejuene, R., Nielsen, J., Baron, G. 1995. Morphology of Trichoderma reesei QM 9414 insubmerged cultures. Biotechnol. Bioeng. 47, 609-615.

Li, X-H., Yang, H-J., Roy, B., Park, E.Y., Jiang, L-J., Wang, D., Miao, Y-G. 2010. Enhanced cellulase production of the Trichoderma viridae mutated by microwave and ultraviolet. Microbiol. Res. 16 (3), 190-198.

Lynd, L.R. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Molec. Biol. Rev. 66, 506-577.

Mandels, M., Andreotti, R., Roche, C. 1976. Measurement of saccharifying cellulase. Biotech. Bioeng. Symp. 6, 21-23.

Merino, S.T., Cherry, J. 2007. Progress and challenges in enzyme development for biomass utilization. Adv. Biochem. Eng. Biotechnol. 108, 95-120

Pardo, A.G. 1996. Effect of surfactants on cellulase production by Nectria catalinensis. Curr. Microbiol. 33(4), 275–8

Peterson, R., Nevalainen, H. 2012. Trichoderma reesei RUT-C30 - thirty years of strain improvement. Microbiology 158, 58-68.

Shahbazi, S., Ispareh, K., Karimi, M., Askari, H., Ebrahimi, M.A. 2014. Gamma and UV radiation induced mutagenesisi in Trichoderma reesei to enhance celulases enzyme activity. Int’l J. of Fam. and Alli Sci. 3(5), 543-554.

Singhania, R.R., Sukumaran, R.K., Patel, A.K., Larroche, C. Pandey, A. 2010. Advancement and comparative profiles in the production

technologies using solid-state and submerged fermentation for microbial

cellulases. Enzyme Microb. Technol. 46, 541-549.

Steyaert, J.M., Weld, R.J., Stewart, A. 2010. Ambient pH intrinsically influences Trichoderma conidiation and colony morphology. Fungal Biology 114, 193-208.

Suto, M., Tomita, F. 2001. Induction and catabolite repression mechanisms of cellulase in fungi. J. Biosci. Bioeng. 92 (4),305-311.

Yan, Z-L., Cao, X-H., Liu, Q-D., Yang, Z-Y., Teng, Y-O., Zhao, J. 2012. A Shortcut to the optimization of cellulase production using the mutant Trichoderma reesei YC-108. Indian J. Microbiol. 52(4), 670-675.


Article Metrics


Abstract view : 301 times
PDF view : 169 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2016 JURNAL SELULOSA
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.