Solid Acid Hydrolysis for Isolation of Cellulose Nanocrystals and Chitin Nanocrystals – A mini review

Frederikus Tunjung Seta(1*), Xingye An(2), Hongbin Liu(3)
(1) Center for Pulp and Paper - Ministry of Industry
(2) Tianjin University of Science and Technology
(3) Tianjin University of Science and Technology
(*) Corresponding Author
DOI: http://dx.doi.org/10.25269/jsel.v11i02.341

Abstract

Cellulose and chitin are two of the most abundant biopolymer on earth, have been attracted a lot of interest from many researchers, especially related to their nanoparticles form. Recently the method to extract them into nanoscale materials mostly by mineral or liquid acid hydrolysis, such as sulfuric and hydrochloric acid. Despite their high yield production, many disadvantages are produced by their use as a hydrolysis catalyst, such as low thermal stability and are difficult to be functionalized due to the presence of sulfate groups, tendency to be aggregated due to the bare surface charge density, the potential excessive degradation of cellulose; and large amounts of effluent will be produced due to the neutralization stage and corrosion hazards to the equipment and environment. To overcome the drawback of those acids, solid acid can be used to produce cellulose (CNC) and chitin nanocrystals (ChNC). Their ability to recrystallize and recycle makes them more environmentally friendly, furthermore, most of the acid can do esterification on the surface of cellulose and chitin. The purpose of this paper is to provide a critical review of recent progress related to solid acid hydrolysis since they have interesting characterization even some of their attribute is better than the conventional method.

Keywords

Cellulose nanocrystals (CNC); Chitin nanocrystals (ChNC); Solid acid hydrolysis

Full Text:

PDF

References

A. Kiruba, A. K., V. Uthayakumar, V. U., S. Munirasu, S. M. and V. Ramasubramanian, V. R. (2011) ‘Extraction, Characterization and Physico Chemical Properties of Chitin and Chitosan from Mud Crab Shell (Scylla Serrata)’, Indian Journal of Applied Research, 3(8), pp. 44–46. doi: 10.15373/2249555x/aug2013/14.

Abdul Khalil, H. P. S., Saurabh, C. K., Adnan, A. S., Nurul Fazita, M. R., Syakir, M. I., Davoudpour, Y., Rafatullah, M., Abdullah, C. K., Haafiz, M. K. M. and Dungani, R. (2016) ‘A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: Properties and their applications’, Carbohydrate Polymers. Elsevier Ltd., 150, pp. 216–226. doi: 10.1016/j.carbpol.2016.05.028.

Abushammala, H., Krossing, I. and Laborie, M. P. (2015) ‘Ionic liquid-mediated technology to produce cellulose nanocrystals directly from wood’, Carbohydrate Polymers. Elsevier Ltd., 134, pp. 609–616. doi: 10.1016/j.carbpol.2015.07.079.

Amin, K. N., Annamalai, P. K., Morrow, I. C. and Martin, D. (2015) ‘Production of cellulose nanocrystals via a scalable mechanical method’, RSC Advances. Royal Society of Chemistry, 5(70), pp. 57133–57140. doi: 10.1039/c5ra06862b.

An, X., Wen, Y., Cheng, D. and Zhu, X. (2016) ‘Preparation of cellulose nano-crystals through a sequential process of cellulase pretreatment and acid hydrolysis’, Cellulose. Springer Netherlands. doi: 10.1007/s10570-016-0964-4.

Anderson, S. R., Esposito, D., Gillette, W., Zhu, J. Y., Baxa, U. and McNeil, S. E. (2014) ‘Enzymatic preparation of nanocrystalline and microcrystalline cellulose’, Tappi Journal, 13(5), pp. 35–42. doi: 10.32964/tj13.5.35.

Apleblat, A. (2014) Citric acid. Springer.

Aulin, C., Ahok, S., Josefsson, P., Nishino, T., Hirose, Y., Österberg, M. and Wågberg, L. (2009) ‘Nanoscale cellulose films with different crystallinities and mesostructures - Their surface properties and interaction with water’, Langmuir, 25(13), pp. 7675–7685. doi: 10.1021/la900323n.

Awang, N. W., Ramasamy, D., Kadirgama, K., Samykano, M., Najafi, G. and Sidik, N. A. C. (2019) ‘An experimental study on characterization and properties of nano lubricant containing Cellulose Nanocrystal (CNC)’, International Journal of Heat and Mass Transfer. Elsevier Ltd, 130, pp. 1163–1169. doi: 10.1016/j.ijheatmasstransfer.2018.11.041.

Bährle-Rapp, M. and Bährle-Rapp, M. (2007) ‘Maleic Acid’, Springer Lexikon Kosmetik und Körperpflege, pp. 337–337. doi: 10.1007/978-3-540-71095-0_6254.

Barikani, M., Oliaei, E., Seddiqi, H. and Honarkar, H. (2014) ‘Preparation and application of chitin and its derivatives: A review’, Iranian Polymer Journal (English Edition), 23(4), pp. 307–326. doi: 10.1007/s13726-014-0225-z.

Beck-candanedo, S., Roman, M. and Gray, D. G. (2005) ‘Effect of Reaction Conditions on the Properties and Behavior of Wood Cellulose Nanocrystal Suspensions’, Biomacromolecules, 6, pp. 1048–1054.

Beltramino, F., Roncero, M. B., Torres, A. L., Vidal, T. and Valls, C. (2016) ‘Optimization of sulfuric acid hydrolysis conditions for preparation of nanocrystalline cellulose from enzymatically pretreated fibers’, Cellulose. Springer Netherlands, 23(3), pp. 1777–1789. doi: 10.1007/s10570-016-0897-y.

Bian, H., Chen, L., Dai, H. and Zhu, J. Y. (2017) ‘Integrated production of lignin containing cellulose nanocrystals (LCNC) and nanofibrils (LCNF) using an easily recyclable di-carboxylic acid’, Carbohydrate Polymers. Elsevier Ltd., 167, pp. 167–176. doi: 10.1016/j.carbpol.2017.03.050.

Bian, H., Chen, L. and Dai, H. (2017) ‘Effect of fiber drying on properties of lignin containing cellulose nanocrystals and nanofibrils produced through maleic acid hydrolysis’, Cellulose. Springer Netherlands. doi: 10.1007/s10570-017-1430-7.

Bondeson, D., Mathew, A. and Oksman, K. (2006) ‘Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis’, Cellulose, 13(2), pp. 171–180. doi: 10.1007/s10570-006-9061-4.

Börjesson, M. and Westman, G. (2015) ‘Crystalline Nanocellulose — Preparation, Modification, and Properties’, in Cellulose - Fundamental Aspects and Current Trends. doi: 10.5772/61899.

Boujemaoui, A., Mongkhontreerat, S., Malmström, E. and Carlmark, A. (2015) ‘Preparation and characterization of functionalized cellulose nanocrystals’, Carbohydrate Polymers. Elsevier Ltd., 115, pp. 457–464. doi: 10.1016/j.carbpol.2014.08.110.

Brito, B. S. L., Pereira, F. V., Putaux, J. L. and Jean, B. (2012) ‘Preparation, morphology and structure of cellulose nanocrystals from bamboo fibers’, Cellulose, 19(5), pp. 1527–1536. doi: 10.1007/s10570-012-9738-9.

Camarero Espinosa, S., Kuhnt, T., Foster, E. J. and Weder, C. (2013) ‘Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis’, Biomacromolecules, 14(4), pp. 1223–1230. doi: 10.1021/bm400219u.

Cao, L., Yuan, D., Xu, C. and Chen, Y. (2017) ‘Biobased, self-healable, high strength rubber with tunicate cellulose nanocrystals’, Nanoscale, 9(40), pp. 15696–15706. doi: 10.1039/c7nr05011a.

Cao, X., Chen, Y., Chang, P. R., Muir, A. D. and Falk, G. (2008) ‘Starch-based nanocomposites reinforced with flax cellulose nanocrystals’, Express Polymer Letters, 2(7), pp. 502–510. doi: 10.3144/expresspolymlett.2008.60.

Cao, X., Xu, C., Wang, Y., Liu, Yu, Liu, Yuhong and Chen, Y. (2013) ‘New nanocomposite materials reinforced with cellulose nanocrystals in nitrile rubber’, Polymer Testing, 32(5), pp. 819–826. doi: 10.1016/j.polymertesting.2013.04.005.

Cao, X. and Liu, D. (2015) ‘Preparation and characterization of bamboo nanocrystalline cellulose’, (February). doi: 10.15376/biores.7.2.1802-1812.

Chang, C. P., Wang, I. C., Hung, K. J. and Perng, Y. S. (2010) ‘Preparation and characterization of nanocrystalline cellulose by acid hydrolysis of cotton linter’, Taiwan Journal of Forest Science, 25(3), pp. 251–264. doi: 10.7075/TJFS.201009.0251.

Chen, Xiaoquan Deng, Xueyan Shen, Wenhao, J. ilngling (2012) ‘Controlled Enzymolysis Preparation of’, BioResources, 7(3), pp. 4237–4248.

Chen, F., Hong, B., Guo, X. and Xue, G. X. (2013) ‘Pretreatment of bamboo powder for cellulose nanocrystalline by sulfuric acid hydrolysis’, Advanced Materials Research, 785–786, pp. 346–353. doi: 10.4028/www.scientific.net/AMR.785-786.346.

Chen, J. H., Liu, J. G., Yuan, T. Q. and Sun, R. C. (2017) ‘Comparison of cellulose and chitin nanocrystals for reinforcing regenerated cellulose fibers’, Journal of Applied Polymer Science, 134(22), pp. 1–8. doi: 10.1002/app.44880.

Chen, L., Zhu, J. Y., Baez, C., Kitin, P. and Elder, T. (2016) ‘Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids’, Green Chemistry, 18(13), pp. 3835–3843. doi: 10.1039/c6gc00687f.

Chen, X., Deng, X., Shen, W. and Jiang, L. (2012) ‘Controlled enzymolysis preparation of nanocrystalline cellulose from pretreated cotton fibers’, BioResources, 7(3), pp. 4237–4248. doi: 10.15376/biores.7.3.4237-4248.

Chen, X. Q., Pang, G. X., Shen, W. H., Tong, X. and Jia, M. Y. (2019) ‘Preparation and characterization of the ribbon-like cellulose nanocrystals by the cellulase enzymolysis of cotton pulp fibers’, Carbohydrate Polymers. Elsevier, 207(October 2018), pp. 713–719. doi: 10.1016/j.carbpol.2018.12.042.

Cheng, M., Qin, Z., Chen, Y., Hu, S., Ren, Z. and Zhu, M. (2017) ‘Efficient Extraction of Cellulose Nanocrystals through Hydrochloric Acid Hydrolysis Catalyzed by Inorganic Chlorides under Hydrothermal Conditions’, ACS Sustainable Chemistry and Engineering, 5(6), pp. 4656–4664. doi: 10.1021/acssuschemeng.6b03194.

Chieng, B. W., Lee, S. H., Ibrahim, N. A., Then, Y. Y. and Loo, Y. Y. (2017) ‘Isolation and characterization of cellulose nanocrystals from oil palm mesocarp fiber’, Polymers, 9(8), pp. 1–11. doi: 10.3390/polym9080355.

Csiszár, E. and Nagy, S. (2017) ‘A comparative study on cellulose nanocrystals extracted from bleached cotton and flax and used for casting films with glycerol and sorbitol plasticisers’, Carbohydrate Polymers. Elsevier Ltd., 174, pp. 740–749. doi: 10.1016/j.carbpol.2017.06.103.

Dong, S., Bortner, M. J. and Roman, M. (2016) ‘Analysis of the sulfuric acid hydrolysis of wood pulp for cellulose nanocrystal production: A central composite design study’, Industrial Crops and Products. Elsevier B.V., 93, pp. 76–87. doi: 10.1016/j.indcrop.2016.01.048.

Duan, B., Huang, Y., Lu, A. and Zhang, L. (2018) ‘Recent advances in chitin based materials constructed via physical methods’, Progress in Polymer Science. Elsevier Ltd, 82, pp. 1–33. doi: 10.1016/j.progpolymsci.2018.04.001.

Duan, Y., Freyburger, A., Kunz, W. and Zollfrank, C. (2018) ‘Cellulose and chitin composite materials from an ionic liquid and a green co-solvent’, Carbohydrate Polymers. Elsevier Ltd., 192, pp. 159–165. doi: 10.1016/j.carbpol.2018.03.045.

Dufresne, A. (2013) Nanocellulose: from nature tDufresne, A. (2013). Nanocellulose: from nature to high performance tailored materials. Walter de Gruyter. https://doi.org/https://doi.org/10.1515/9783110254600o high performance tailored materials. Walter de Gruyter. doi: https://doi.org/10.1515/9783110254600.

Durán, N., Lemes, A. P., Durán, M., Freer, J. and Baeza, J. (2011) ‘A minireview of cellulose nanocrystals and its potential integration as co-product in bioethanol production’, Journal of the Chilean Chemical Society, 56(2), pp. 672–677. doi: 10.4067/S0717-97072011000200011.

Duran, N., Paula Lemes, A. and B. Seabra, A. (2011) ‘Review of Cellulose Nanocrystals Patents: Preparation, Composites and General Applications’, Recent Patents on Nanotechnology, 6(1), pp. 16–28. doi: 10.2174/187221012798109255.

Einbu, A. (2007) Characterisation of chitin and a study of its acid-catalysed hydrolysis.

Elazzouzi-Hafraoui, S., Nishiyama, Y., Putaux, J. L., Heux, L., Dubreuil, F. and Rochas, C. (2008) ‘The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose’, Biomacromolecules, 9(1), pp. 57–65. doi: 10.1021/bm700769p.

Espinosa, S. C., Kuhnt, T., Foster, E. J. and Weder, C. (2013) ‘Isolation of Thermally Stable Cellulose Nanocrystals by Phosphoric Acid Hydrolysis’.

Fan, Y., Saito, T. and Isogai, A. (2008) ‘Chitin nanocrystals prepared by TEMPO-mediated oxidation of α-chitin’, Biomacromolecules, pp. 192–198. doi: 10.1021/bm700966g.

Feng, Y. T., Han, K. and Owen, D. R. J. (2004) ‘Discrete element simulation of the dynamics of high energy planetary ball milling processes’, Materials Science and Engineering A, 375–377(1-2 SPEC. ISS.), pp. 815–819. doi: 10.1016/j.msea.2003.10.162.

Filson, P. B. and Dawson-Andoh, B. E. (2009) ‘Sono-chemical preparation of cellulose nanocrystals from lignocellulose derived materials’, Bioresource Technology. Elsevier Ltd, 100(7), pp. 2259–2264. doi: 10.1016/j.biortech.2008.09.062.

Flauzino Neto, W. P., Silvério, H. A., Dantas, N. O. and Pasquini, D. (2013) ‘Extraction and characterization of cellulose nanocrystals from agro-industrial residue - Soy hulls’, Industrial Crops and Products. Elsevier B.V., 42(1), pp. 480–488. doi: 10.1016/j.indcrop.2012.06.041.

Goetz, L. A., Jalvo, B., Rosal, R. and Mathew, A. P. (2016) ‘Superhydrophilic anti-fouling electrospun cellulose acetate membranes coated with chitin nanocrystals for water filtration’, Journal of Membrane Science. Elsevier, 510, pp. 238–248. doi: 10.1016/j.memsci.2016.02.069.

Goodrich, J. D.; Winter, W. T. (2007) ‘Alpha-chitin nanocrystals prepared from shrimp shells and their specific properties’, Biomacromolecules, p. 252− 257.

Gopalan Nair, K. and Dufresne, A. (2003) ‘Crab shell chitin whisker reinforced natural rubber nanocomposites. 1. Processing and swelling behavior’, Biomacromolecules, 4(3), pp. 657–665. doi: 10.1021/bm020127b.

Gopi, S., Balakrishnan, P., Pius, A. and Thomas, S. (2017) ‘Chitin nanowhisker (ChNW)-functionalized electrospun PVDF membrane for enhanced removal of Indigo carmine’, Carbohydrate Polymers. Elsevier Ltd., 165, pp. 115–122. doi: 10.1016/j.carbpol.2017.02.046.

Grishkewich, N., Mohammed, N., Tang, J. and Tam, K. C. (2017) ‘Recent advances in the application of cellulose nanocrystals’, Current Opinion in Colloid and Interface Science. Elsevier Ltd, 29, pp. 32–45. doi: 10.1016/j.cocis.2017.01.005.

Habibi, Y., Lucia, L. A. and Rojas, O. J. (2010) ‘Cellulose nanocrystals: Chemistry, self-assembly, and applications’, Chemical Reviews, 110(6), pp. 3479–3500. doi: 10.1021/cr900339w.

Henriksson, M., Henriksson, G., Berglund, L. A. and Lindström, T. (2007) ‘An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers’, European Polymer Journal, 43(8), pp. 3434–3441. doi: 10.1016/j.eurpolymj.2007.05.038.

Hong, B., Chen, F. and Xue, G. (2016) ‘Preparation and characterization of Cellulose nanocrystals from bamboo pulp’, Cellulose Chemistry and Technology, 50(2), pp. 225–231.

Huang, J., Zhu, H., Chen, Y., Preston, C., Rohrbach, K., Cumings, J. and Hu, L. (2013) ‘Highly transparent and flexible nanopaper transistors’, ACS Nano, pp. 2106–2113. doi: 10.1021/nn304407r.

Huang, S., Zhou, L., Li, M. C., Wu, Q. and Zhou, D. (2017) ‘Cellulose nanocrystals (CNCs) from corn stalk: Activation energy analysis’, Materials, 10(1), pp. 1–13. doi: 10.3390/ma10010080.

Huntley, C. J., Crews, K. D., Abdalla, M. A., Russell, A. E. and Curry, M. L. (2015) ‘Influence of strong acid hydrolysis processing on the thermal stability and crystallinity of cellulose isolated from wheat straw’, International Journal of Chemical Engineering, 2015. doi: 10.1155/2015/658163.

Hussain, S. T. (2012) ‘Solubility of Oxalic Acid’, Asian Journal of Research in Chemistry, 5(11), pp. 1323–1330.

Inshakova, E. and Inshakov, O. (2017) ‘World market for nanomaterials: Structure and trends’, MATEC Web of Conferences, 129(2017), pp. 1–5. doi: 10.1051/matecconf/201712902013.

Istomina, A. P., Bogdanova, O. I., Streltsov, D. R. and Chvalun, S. N. (2019) ‘Stability of Suspensions of α-Chitin Nanocrystals Obtained by TEMPO Oxidation’, Polymer Science - Series A, pp. 589–597. doi: 10.1134/S0965545X19050080.

Iwamoto, S., Nakagaito, A. N. and Yano, H. (2007) ‘Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites’, Applied Physics A: Materials Science and Processing, 89(2), pp. 461–466. doi: 10.1007/s00339-007-4175-6.

Jalvo, B., Mathew, A. P. and Rosal, R. (2017) ‘Coaxial poly(lactic acid) electrospun composite membranes incorporating cellulose and chitin nanocrystals’, Journal of Membrane Science. Elsevier B.V., 544(July), pp. 261–271. doi: 10.1016/j.memsci.2017.09.033.

Jang, M. K., Kong, B. G., Jeong, Y. Il, Lee, C. H. and Nah, J. W. (2004) ‘Physicochemical characterization of α-chitin, β-chitin, and γ-chitin separated from natural resources’, Journal of Polymer Science, Part A: Polymer Chemistry, pp. 3423–3432. doi: 10.1002/pola.20176.

Jia, C., Bian, H., Gao, T., Jiang, F., Kierzewski, I. M., Wang, Y., Yao, Y., Chen, L., Shao, Z., Zhu, J. Y. and Hu, L. (2017) ‘Thermally Stable Cellulose Nanocrystals toward High-Performance 2D and 3D Nanostructures’, ACS Applied Materials and Interfaces, 9(34), pp. 28922–28929. doi: 10.1021/acsami.7b08760.

Jia, C., Chen, L., Shao, Z., Agarwal, U. P., Hu, L. and Zhu, J. Y. (2017) ‘Using a fully recyclable dicarboxylic acid for producing dispersible and thermally stable cellulose nanomaterials from different cellulosic sources’, Cellulose. Springer Netherlands, 24(6), pp. 2483–2498. doi: 10.1007/s10570-017-1277-y.

Jia, W. and Liu, Y. (2019) ‘Two characteristic cellulose nanocrystals (CNCs) obtained from oxalic acid and sulfuric acid processing’, Cellulose. Springer Netherlands, 26(15), pp. 8351–8365. doi: 10.1007/s10570-019-02690-9.

Jiang, J., Ye, W., Yu, J., Fan, Y., Ono, Y., Saito, T. and Isogai, A. (2018) ‘Chitin nanocrystals prepared by oxidation of α-chitin using the O2/laccase/TEMPO system’, Carbohydrate Polymers, pp. 178–183. doi: 10.1016/j.carbpol.2018.01.096.

Jose, R. H.; Alfredo, D. M. E. (1999) Chitin and Chitinases. Basel, Switzerland: Birkhauser.

Jung, Y. H., Chang, T. H., Zhang, H., Yao, C., Zheng, Q., Yang, V. W., Mi, H., Kim, M., Cho, S. J., Park, D. W., Jiang, H., Lee, J., Qiu, Y., Zhou, W., Cai, Z., Gong, S. and Ma, Z. (2015) ‘High-performance green flexible electronics based on biodegradable cellulose nanofibril paper’, Nature Communications. Nature Publishing Group, 6(May). doi: 10.1038/ncomms8170.

Kandhola, G., Djioleu, A., Rajan, K., Labbé, N., Sakon, J., Carrier, D. J. and Kim, J. W. (2020) ‘Maximizing production of cellulose nanocrystals and nanofibers from pre-extracted loblolly pine kraft pulp: a response surface approach’, Bioresources and Bioprocessing. Springer Singapore, 7(1). doi: 10.1186/s40643-020-00302-0.

Kargarzadeh, H., Mariano, M., Gopakumar, D., Ahmad, I., Thomas, S., Dufresne, A., Huang, J. and Lin, N. (2018) Advances in cellulose nanomaterials, Cellulose. Springer Netherlands. doi: 10.1007/s10570-018-1723-5.

Kaya, M., Mujtaba, M., Ehrlich, H., Salaberria, A. M., Baran, T., Amemiya, C. T., Galli, R., Akyuz, L., Sargin, I. and Labidi, J. (2017) ‘On chemistry of γ-chitin’, Carbohydrate Polymers, pp. 177–186. doi: 10.1016/j.carbpol.2017.08.076.

Klemm, D., Heublein, B., Fink, H. P. and Bohn, A. (2005) ‘Cellulose: Fascinating biopolymer and sustainable raw material’, Angewandte Chemie - International Edition, 44(22), pp. 3358–3393. doi: 10.1002/anie.200460587.

Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D. and Dorris, A. (2011) ‘Nanocelluloses: A new family of nature-based materials’, Angewandte Chemie - International Edition. doi: 10.1002/anie.201001273.

Kroschwitz, J. I. (1985) Encyclopedia of Polymer Science and Engineering : Cellulose structure and properties. New York: Wiley-Interscience Publication John Wiley & Sons.

Kurita, K., Tomita, K., Tada, T., Ishii, S., Nishimura, S. ‐I and Shimoda, K. (1993) ‘Squid chitin as a potential alternative chitin source: Deacetylation behavior and characteristic properties’, Journal of Polymer Science Part A: Polymer Chemistry, 31(2), pp. 485–491. doi: 10.1002/pola.1993.080310220.

Kurita, K., Ishii, S., Tomita, K., Nishimura, S. I. and Shimoda, K. (1994) ‘Reactivity characteristics of squid β-chiti.pdf’, Journal of Polymer Science, Part A: Polymer Chemistry, pp. 1027–1032.

Kusmono, Wildan, M. W. and Ilman, M. N. (2019) ‘A preliminary study of extraction and characterization of nanocrystalline cellulose ( NCC ) from ramie fiber Abstract’, 1, pp. 42–46.

Lahiji, R. R., Xu, X., Reifenberger, R., Raman, A., Rudie, A. and Moon, R. J. (2010) ‘Atomic force microscopy characterization of cellulose nanocrystals’, Langmuir, 26(6), pp. 4480–4488. doi: 10.1021/la903111j.

Lee, K. Y., Aitomäki, Y., Berglund, L. A., Oksman, K. and Bismarck, A. (2014) ‘On the use of nanocellulose as reinforcement in polymer matrix composites’, Composites Science and Technology. Elsevier Ltd, 105, pp. 15–27. doi: 10.1016/j.compscitech.2014.08.032.

Lemke, C. H., Dong, R. Y., Michal, C. A. and Hamad, W. Y. (2012) ‘New insights into nano-crystalline cellulose structure and morphology based on solid-state NMR’, Cellulose, 19(5), pp. 1619–1629. doi: 10.1007/s10570-012-9759-4.

Li-rong, T., Biao, H., Wen, O., Xue-rong, C. and Yan-dan, C. (2011) ‘Bioresource Technology Manufacture of cellulose nanocrystals by cation exchange resin-catalyzed hydrolysis of cellulose’, Bioresource Technology. Elsevier Ltd, 102(23), pp. 10973–10977. doi: 10.1016/j.biortech.2011.09.070.

Li, D., Henschen, J. and Ek, M. (2017) ‘Esterification and hydrolysis of cellulose using oxalic acid dihydrate in a solvent-free reaction suitable for preparation of surface-functionalised cellulose nanocrystals with high yield’, Green Chemistry. Royal Society of Chemistry, 19(23), pp. 5564–5567. doi: 10.1039/c7gc02489d.

Li, F., Biagioni, P., Bollani, M., Maccagnan, A. and Piergiovanni, L. (2013) ‘Multi-functional coating of cellulose nanocrystals for flexible packaging applications’, Cellulose, 20(5), pp. 2491–2504. doi: 10.1007/s10570-013-0015-3.

Li, W., Wang, R. and Liu, S. (2011) ‘Nanocrystalline cellulose prepared from softwood kraft pulp via ultrasonic-assisted acid hydrolysis’, BioResources, 6(4), pp. 4271–4281. doi: 10.15376/biores.6.4.4271-4281.

Li, Y., Liu, Yongzhuang, Chen, W., Wang, Q., Liu, Yixing, Li, J. and Yu, H. (2016) ‘Facile extraction of cellulose nanocrystals from wood using ethanol and peroxide solvothermal pretreatment followed by ultrasonic nanofibrillation’, Green Chemistry, 18(4), pp. 1010–1018. doi: 10.1039/c5gc02576a.

Li, Z., Zhang, M., Cheng, D. and Yang, R. (2016) ‘Preparation of silver nano-particles immobilized onto chitin nano-crystals and their application to cellulose paper for imparting antimicrobial activity’, Carbohydrate Polymers. Elsevier Ltd., 151, pp. 834–840. doi: 10.1016/j.carbpol.2016.06.012.

Lin, K. H., Enomae, T. and Chang, F. C. (2019) ‘Cellulose Nanocrystal Isolation from Hardwood Pulp using Various Hydrolysis Conditions’, Molecules, 24(20), pp. 3–5. doi: 10.3390/molecules24203724.

Ling, Z., Edwards, J. V., Guo, Z., Prevost, N. T., Nam, S., Wu, Q., French, A. D. and Xu, F. (2019) ‘Structural variations of cotton cellulose nanocrystals from deep eutectic solvent treatment: micro and nano scale’, Cellulose. Springer Netherlands, 26(2), pp. 861–876. doi: 10.1007/s10570-018-2092-9.

Liu, Y., Wang, H., Yu, G., Yu, Q., Li, B. and Mu, X. (2014) ‘A novel approach for the preparation of nanocrystalline cellulose by using phosphotungstic acid’, Carbohydrate Polymers. Elsevier Ltd., 110, pp. 415–422. doi: 10.1016/j.carbpol.2014.04.040.

Liu, Y., Liu, M., Yang, S., Luo, B. and Zhou, C. (2018) ‘Liquid Crystalline Behaviors of Chitin Nanocrystals and Their Reinforcing Effect on Natural Rubber’, ACS Sustainable Chemistry and Engineering, 6(1), pp. 325–336. doi: 10.1021/acssuschemeng.7b02586.

Liu, Z., He, M., Ma, G., Yang, G. and Chen, J. (2019) ‘Preparation and characterization of cellulose nanocrystals from wheat straw and corn stalk’, Palpu Chongi Gisul/Journal of Korea Technical Association of the Pulp and Paper Industry, 51(2), pp. 40–48. doi: 10.7584/JKTAPPI.2019.04.51.2.40.

Lorenz, M., Sattler, S., Reza, M., Bismarck, A. and Kontturi, E. (2017) ‘Cellulose nanocrystals by acid vapour: Towards more effortless isolation of cellulose nanocrystals’, Faraday Discussions. Royal Society of Chemistry, 202, pp. 315–330. doi: 10.1039/c7fd00053g.

Lu, Q., Cai, Z., Lin, F., Tang, L., Wang, S. and Huang, B. (2016) ‘Extraction of Cellulose Nanocrystals with a High Yield of 88% by Simultaneous Mechanochemical Activation and Phosphotungstic Acid Hydrolysis’. doi: 10.1021/acssuschemeng.5b01620.

Lu, Y. and Mosier, N. S. (2008) ‘Kinetic modeling analysis of maleic acid-catalyzed hemicellulose hydrolysis in corn stover’, Biotechnology and Bioengineering, 101(6), pp. 1170–1181. doi: 10.1002/bit.22008.

Lu, Y., Weng, L. and Zhang, L. (2004) ‘Morphology and properties of soy protein isolate thermoplastics reinforced with chitin whiskers’, Biomacromolecules, 5(3), pp. 1046–1051. doi: 10.1021/bm034516x.

Lu, Z., An, X., Zhang, H., Guan, M., Liu, J., Sun, Y., Nie, S., Cao, H., Lu, B. and Liu, H. (2019) ‘Study on the wet-web strength and pressability of paper sheet during the press process with the addition of nano-fibrillated cellulose (NFC)’, Carbohydrate Polymers. Elsevier, 210(29), pp. 332–338. doi: 10.1016/j.carbpol.2019.01.083.

Maleic acid (no date).

Marchessault, R. H., Morehead, F. F. and Walter, N. M. (1959) ‘Liquid Crystal Systems from Fibrillar Polysaccharides’, Nature, 184, pp. 632–633. doi: 10.1038/184632a0.

Miao, J., Yu, Y., Jiang, Z. and Zhang, L. (2016) ‘One-pot preparation of hydrophobic cellulose nanocrystals in an ionic liquid’, Cellulose. Springer Netherlands, 23(2), pp. 1209–1219. doi: 10.1007/s10570-016-0864-7.

Moon, R. J., Martini, A., Nairn, J., Simonsen, J. and Youngblood, J. (2011) Cellulose nanomaterials review: Structure, properties and nanocomposites, Chemical Society Reviews. doi: 10.1039/c0cs00108b.

Morais, J. P. S., Rosa, M. D. F., De Souza Filho, M. D. S. M., Nascimento, L. D., Do Nascimento, D. M. and Cassales, A. R. (2013) ‘Extraction and characterization of nanocellulose structures from raw cotton linter’, Carbohydrate Polymers. Elsevier Ltd., 91(1), pp. 229–235. doi: 10.1016/j.carbpol.2012.08.010.

Morán, J. I., Alvarez, V. A., Cyras, V. P. and Vázquez, A. (2008) ‘Extraction of cellulose and preparation of nanocellulose from sisal fibers’, Cellulose, 15(1), pp. 149–159. doi: 10.1007/s10570-007-9145-9.

Morin, A. and Dufresne, A. (2002) ‘Nanocomposites of chitin whiskers from Riftia tubes and poly(caprolactone)’, Macromolecules, 35(6), pp. 2190–2199. doi: 10.1021/ma011493a.

Mosier, N. S., Sarikaya, A., Ladisch, C. M. and Ladisch, M. R. (2001) ‘Characterization of dicarboxylic acids for cellulose hydrolysis’, Biotechnology Progress, 17(3), pp. 474–480. doi: 10.1021/bp010028u.

Ng, H. M., Sin, L. T., Tee, T. T., Bee, S. T., Hui, D., Low, C. Y. and Rahmat, A. R. (2015) ‘Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers’, Composites Part B: Engineering, 75, pp. 176–200. doi: 10.1016/j.compositesb.2015.01.008.

Nikolov, S., Petrov, M., Lymperakis, L., Friák, M., Sachs, C., Fabritius, H. O., Raabe, D. and Neugebauer, J. (2010) ‘Revealing the design principles of high-performance biological composites using Ab initio and multiscale simulations: The example of lobster cuticle’, Advanced Materials, 22(4), pp. 519–526. doi: 10.1002/adma.200902019.

Novo, L. P., Bras, J., García, A., Belgacem, N. and Curvelo, A. A. da S. (2016) ‘A study of the production of cellulose nanocrystals through subcritical water hydrolysis’, Industrial Crops and Products. Elsevier B.V., 93, pp. 88–95. doi: 10.1016/j.indcrop.2016.01.012.

Oun, A. A. and Rhim, J. W. (2016) ‘Isolation of cellulose nanocrystals from grain straws and their use for the preparation of carboxymethyl cellulose-based nanocomposite films’, Carbohydrate Polymers. Elsevier Ltd., 150, pp. 187–200. doi: 10.1016/j.carbpol.2016.05.020.

Oun, A. A. and Rhim, J. W. (2018) ‘Effect of isolation methods of chitin nanocrystals on the properties of chitin-silver hybrid nanoparticles’, Carbohydrate Polymers. Elsevier, 197(June), pp. 349–358. doi: 10.1016/j.carbpol.2018.06.033.

Oun, A. A. and Rhim, J. W. (2020) ‘Preparation of multifunctional carboxymethyl cellulose-based films incorporated with chitin nanocrystal and grapefruit seed extract’, International Journal of Biological Macromolecules. Elsevier LTD, 152, pp. 1038–1046. doi: 10.1016/j.ijbiomac.2019.10.191.

Paillet, M. and Dufresne, A. (2001) ‘Chitin whisker reinforced thermoplastic nanocomposites [1]’, Macromolecules, 34(19), pp. 6527–6530. doi: 10.1021/ma002049v.

Peng, B. L., Dhar, N., Liu, H. L. and Tam, K. C. (2011) ‘Chemistry and applications of nanocrystalline cellulose and its derivatives: A nanotechnology perspective’, Canadian Journal of Chemical Engineering, 89(5), pp. 1191–1206. doi: 10.1002/cjce.20554.

Perrin, E., Bizot, H., Cathala, B. and Capron, I. (2014) ‘Chitin nanocrystals for pickering high internal phase emulsions’, Biomacromolecules, 15(10), pp. 3766–3771. doi: 10.1021/bm5010417.

Phanthong, P., Guan, G., Ma, Y., Hao, X. and Abudula, A. (2015) ‘Effect of ball milling on the production of nanocellulose using mild acid hydrolysis method’, Journal of the Taiwan Institute of Chemical Engineers. Elsevier B.V., 000, pp. 1–6. doi: 10.1016/j.jtice.2015.11.001.

Phongying, S., Aiba, S. ichi and Chirachanchai, S. (2007) ‘Direct chitosan nanoscaffold formation via chitin whiskers’, Polymer, 48(1), pp. 393–400. doi: 10.1016/j.polymer.2006.10.049.

Qiang, D., Zhang, M., Li, J., Xiu, H. and Liu, Q. (2016) ‘Selective hydrolysis of cellulose for the preparation of microcrystalline cellulose by phosphotungstic acid’, Cellulose. Springer Netherlands, 23(2), pp. 1199–1207. doi: 10.1007/s10570-016-0858-5.

R.P.A.Sneeden (1982) Comprehensive Organometallic Chemistry. doi: https://doi.org/10.1016/B978-008046518-0.00107-0.

Rahman, N. H. A., Chieng, B. W., Ibrahim, N. A. and Rahman, N. A. (2017) ‘Extraction and characterization of cellulose nanocrystals from tea leaf waste fibers’, Polymers, 9(11), pp. 1–11. doi: 10.3390/polym9110588.

Rinaudo, M. (2006) ‘Chitin and chitosan: Properties and applications’, Progress in Polymer Science (Oxford), 31(7), pp. 603–632. doi: 10.1016/j.progpolymsci.2006.06.001.

Rudall, K. M. and Kenchington, W. (1973) ‘the Chitin System’, Biological Reviews, 48(4), pp. 597–633. doi: 10.1111/j.1469-185x.1973.tb01570.x.

Salaberria, A. M., Diaz, R. H., Labidi, J. and Fernandes, S. C. M. (2015) ‘Role of chitin nanocrystals and nanofibers on physical, mechanical and functional properties in thermoplastic starch films’, Food Hydrocolloids. Elsevier Ltd, 46, pp. 93–102. doi: 10.1016/j.foodhyd.2014.12.016.

Salaberria, A. M., Diaz, R. H., Andrés, M. A., Fernandes, S. C. M. and Labidi, J. (2017) ‘The antifungal activity of functionalized chitin nanocrystals in poly (Lactid Acid) films’, Materials, 10(5), pp. 1–16. doi: 10.3390/ma10050546.

Salaberria, A. M., Labidi, J. and Fernandes, S. C. M. (2014) ‘Chitin nanocrystals and nanofibers as nano-sized fillers into thermoplastic starch-based biocomposites processed by melt-mixing’, Chemical Engineering Journal. Elsevier B.V., 256, pp. 356–364. doi: 10.1016/j.cej.2014.07.009.

Saxena, I. M. and Brown, R. M. (2005) ‘Cellulose biosynthesis: Current views and evolving concepts’, Annals of Botany, 96(1), pp. 9–21. doi: 10.1093/aob/mci155.

Seabra, A. B., Bernardes, J. S., Fávaro, W. J., Paula, A. J. and Durán, N. (2018) ‘Cellulose nanocrystals as carriers in medicine and their toxicities: A review’, Carbohydrate Polymers. Elsevier, 181(October), pp. 514–527. doi: 10.1016/j.carbpol.2017.12.014.

Seta, F. T., An, X., Liu, L., Zhang, H., Yang, J., Zhang, W., Nie, S., Yao, S., Cao, H., Xu, Q., Bu, Y. and Liu, H. (2020) ‘Preparation and characterization of high yield cellulose nanocrystals (CNC) derived from ball mill pretreatment and maleic acid hydrolysis’, Carbohydrate Polymers. Elsevier Ltd., 234(January), p. 115942. doi: 10.1016/j.carbpol.2020.115942.

Shang, Z., An, X., Seta, F. T., Ma, M., Shen, M., Dai, L., Liu, H. and Ni, Y. (2019) ‘Improving dispersion stability of hydrochloric acid hydrolyzed cellulose nano-crystals’, Carbohydrate Polymers. Elsevier, 222(March), p. 115037. doi: 10.1016/j.carbpol.2019.115037.

Shimizu, K. I., Furukawa, H., Kobayashi, N., Itaya, Y. and Satsuma, A. (2009) ‘Effects of Brønsted and Lewis acidities on activity and selectivity of heteropolyacid-based catalysts for hydrolysis of cellobiose and cellulose’, Green Chemistry, 11(10), pp. 1627–1632. doi: 10.1039/b913737h.

Singh, S., Patel, M., Schwendemann, D., Zaccone, M., Geng, S., Maspoch, M. L. and Oksman, K. (2020) ‘Effect of chitin nanocrystals on crystallization and properties of poly(lactic acid)-based nanocomposites’, Polymers, 12(3), pp. 1–17. doi: 10.3390/polym12030726.

Siqueira, G., Bras, J. and Dufresne, A. (2010) ‘Cellulosic bionanocomposites: A review of preparation, properties and applications’, Polymers, 2(4), pp. 728–765. doi: 10.3390/polym2040728.

Siró, I. and Plackett, D. (2010) ‘Microfibrillated cellulose and new nanocomposite materials: a review’, Cellulose, 17(3), pp. 459–494. doi: 10.1007/s10570-010-9405-y.

Song, K., Ji, Y., Wang, L., Wei, Y. and Yu, Z. (2018) ‘A green and environmental benign method to extract cellulose nanocrystal by ball mill assisted solid acid hydrolysis’, Journal of Cleaner Production. Elsevier B.V., 196, pp. 1169–1175. doi: 10.1016/j.jclepro.2018.06.128.

Sugiyama, J., Boisset, C., Hashimoto, M. and Watanabe, T. (1999) ‘Molecular directionality of β-chitin biosynthesis’, Journal of Molecular Biology, pp. 247–255. doi: 10.1006/jmbi.1998.2458.

Sun, B., Zhang, M., Hou, Q., Liu, R., Wu, T. and Si, C. (2016) ‘Further characterization of cellulose nanocrystal (CNC) preparation from sulfuric acid hydrolysis of cotton fibers’, Cellulose. Springer Netherlands, 23(1), pp. 439–450. doi: 10.1007/s10570-015-0803-z.

Tan, X. Y., Bee, S., Hamid, A. and Lai, C. W. (2015) ‘Biomass and Bioenergy Preparation of high crystallinity cellulose nanocrystals ( CNCs ) by ionic liquid solvolysis’, Biomass and Bioenergy. Elsevier Ltd, 81, pp. 584–591. doi: 10.1016/j.biombioe.2015.08.016.

Tang, J., Sisler, J., Grishkewich, N. and Tam, K. C. (2017) ‘Functionalization of cellulose nanocrystals for advanced applications’, Journal of Colloid and Interface Science. Elsevier Inc., 494, pp. 397–409. doi: 10.1016/j.jcis.2017.01.077.

Tang, Y., Shen, X., Zhang, J., Guo, D., Kong, F. and Zhang, N. (2015) ‘Extraction of cellulose nano-crystals from old corrugated container fiber using phosphoric acid and enzymatic hydrolysis followed by sonication’, Carbohydrate Polymers. Elsevier Ltd., 125, pp. 360–366. doi: 10.1016/j.carbpol.2015.02.063.

Trache, D., Hussin, M. H., Haafiz, M. K. M. and Thakur, V. K. (2017) ‘Recent progress in cellulose nanocrystals: Sources and production’, Nanoscale, 9(5), pp. 1763–1786. doi: 10.1039/c6nr09494e.

Trilokesh, C. and Uppuluri, K. B. (2019) ‘Isolation and characterization of cellulose nanocrystals from jackfruit peel’, Scientific Reports. Springer US, 9(1), pp. 1–8. doi: 10.1038/s41598-019-53412-x.

Tzoumaki, M. V., Karefyllakis, D., Moschakis, T., Biliaderis, C. G. and Scholten, E. (2015) ‘Aqueous foams stabilized by chitin nanocrystals’, Soft Matter. Royal Society of Chemistry, 11(31), pp. 6245–6253. doi: 10.1039/c5sm00720h.

Tzoumaki, M. V., Moschakis, T. and Biliaderis, C. G. (2010) ‘Metastability of nematic gels made of aqueous chitin nanocrystal dispersions’, Biomacromolecules, 11(1), pp. 175–181. doi: 10.1021/bm901046c.

Visanko, M., Liimatainen, H., Sirviö, J. A., Heiskanen, J. P., Niinimäki, J. and Hormi, O. (2014) ‘Amphiphilic cellulose nanocrystals from acid-free oxidative treatment: Physicochemical characteristics and use as an oil-water stabilizer’, Biomacromolecules, 15(7), pp. 2769–2775. doi: 10.1021/bm500628g.

Wan, A. C. A. and Tai, B. C. U. (2013) ‘CHITIN - A promising biomaterial for tissue engineering and stem cell technologies’, Biotechnology Advances. Elsevier Inc., 31(8), pp. 1776–1785. doi: 10.1016/j.biotechadv.2013.09.007.

Wang, Q. Q., Zhu, J. Y., Reiner, R. S., Verrill, S. P., Baxa, U. and Mcneil, S. E. (2012) ‘Approaching zero cellulose loss in cellulose nanocrystal ( CNC ) production : recovery and characterization of cellulosic solid residues ( CSR ) and CNC’, pp. 2033–2047. doi: 10.1007/s10570-012-9765-6.

Wang, Q., Zhao, X. and Zhu, J. Y. (2014) ‘Kinetics of strong acid hydrolysis of a bleached kraft pulp for producing cellulose nanocrystals (CNCs)’, Industrial and Engineering Chemistry Research, 53(27), pp. 11007–11014. doi: 10.1021/ie501672m.

Wang, R., Chen, L., Zhu, J. Y. and Yang, R. (2017) ‘Tailored and integrated production of carboxylated cellulose nanocrystals (CNC) with nanofibrils (CNF) through maleic acid hydrolysis’, ChemNanoMat, 3(5), pp. 328–335. doi: 10.1002/cnma.201700015.

Wijaya, C. J., Ismadji, S., Aparamarta, H. W. and Gunawan, S. (2019) ‘Optimization of cellulose nanocrystals from bamboo shoots using Response Surface Methodology’, Heliyon. Elsevier Ltd, 5(11), p. e02807. doi: 10.1016/j.heliyon.2019.e02807.

Xie, H., Du, H., Yang, X. and Si, C. (2018a) ‘Recent Strategies in Preparation of Cellulose Nanocrystals and Cellulose Nanofibrils Derived from Raw Cellulose Materials’, International Journal of Polymer Science, 2018. doi: 10.1155/2018/7923068.

Xie, H., Du, H., Yang, X. and Si, C. (2018b) ‘Recent Strategies in Preparation of Cellulose Nanocrystals and Cellulose Nanofibrils Derived from Raw Cellulose Materials’, 2018.

Xie, H., Zou, Z., Du, H., Zhang, X., Wang, X., Yang, X., Wang, H., Li, G., Li, L. and Si, C. (2019) ‘Preparation of thermally stable and surface-functionalized cellulose nanocrystals via mixed H2SO4/Oxalic acid hydrolysis’, Carbohydrate Polymers. Elsevier Ltd., 223, p. 115116. doi: 10.1016/j.carbpol.2019.115116.

Xu, W., Grénman, H., Liu, J., Kronlund, D., Li, B., Backman, P., Peltonen, J., Willför, S., Sundberg, A. and Xu, C. (2017) ‘Mild Oxalic-Acid-Catalyzed Hydrolysis as a Novel Approach to Prepare Cellulose Nanocrystals’, ChemNanoMat, 3(2), pp. 109–119. doi: 10.1002/cnma.201600347.

Xu, Y., Salmi, J., Kloser, E., Perrin, F., Grosse, S., Denault, J. and Lau, P. C. K. (2013) ‘Feasibility of nanocrystalline cellulose production by endoglucanase treatment of natural bast fibers’, Industrial Crops and Products. Elsevier B.V., 51, pp. 381–384. doi: 10.1016/j.indcrop.2013.09.029.

Yang, J., An, X., Liu, L., Seta, F. T., Zhang, H., Nie, S., Yao, S., Cao, H., Xu, Q., Liu, H. and Ni, Y. (2020) ‘Chitin nano-crystals/sodium lignosulfonate/Ag NPs nanocomposites: a potent and green catalyst for efficient removal of organic contaminants’, Cellulose. Springer Netherlands, 27(9), pp. 5071–5087. doi: 10.1007/s10570-020-03161-2.

Yeganeh, F., Behrooz, R. and Rahimi, M. (2017) ‘The effect of Sulfuric acid and Maleic acid on characteristics of nano-cellulose produced from waste office paper’, International Journal of Nano Dimension, 8(3), pp. 206–215.

Younes, I. and Rinaudo, M. (2015) ‘Chitin and chitosan preparation from marine sources. Structure, properties and applications’, Marine Drugs, 13(3), pp. 1133–1174. doi: 10.3390/md13031133.

Yu, H., Qin, Z., Liang, B., Liu, N., Zhou, Z. and Chen, L. (2013) ‘Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions’, Journal of Materials Chemistry A, 1(12), pp. 3938–3944. doi: 10.1039/c3ta01150j.

Yu, H., Abdalkarim, S. Y. H., Zhang, H., Wang, C. and Tam, K. C. (2019) ‘Simple Process to Produce High-Yield Cellulose Nanocrystals Using Recyclable Citric/Hydrochloric Acids’, ACS Sustainable Chemistry and Engineering. American Chemical Society, 7(5), pp. 4912–4923. doi: 10.1021/acssuschemeng.8b05526.

Yu, H. Y., Zhang, D. Z., Lu, F. F. and Yao, J. (2016) ‘New Approach for Single-Step Extraction of Carboxylated Cellulose Nanocrystals for Their Use As Adsorbents and Flocculants’, ACS Sustainable Chemistry and Engineering, pp. 2632–2643. doi: 10.1021/acssuschemeng.6b00126.

Yu, M., Yang, R., Huang, L., Cao, X., Yang, F. and Liu, D. (2012) ‘Preparation and characterization of bamboo nanocrystalline cellulose’, BioResources, 7(2), pp. 1802–1812. doi: 10.15376/biores.7.2.1802-1812.

Yuan, Y., Hong, S., Lian, H., Zhang, K. and Liimatainen, H. (2020) ‘Comparison of acidic deep eutectic solvents in production of chitin nanocrystals’, Carbohydrate Polymers. Elsevier, 236(February), p. 116095. doi: 10.1016/j.carbpol.2020.116095.

Zeng, J. B., He, Y. S., Li, S. L. and Wang, Y. Z. (2012) ‘Chitin whiskers: An overview’, Biomacromolecules, 13(1), pp. 1–11. doi: 10.1021/bm201564a.

Zhang, L., Tsuzuki, T. and Wang, X. (2015) ‘Preparation of cellulose nanofiber from softwood pulp by ball milling’. doi: 10.1007/s10570-015-0582-6.

Zhang, P. P., Tong, D. S., Lin, C. X., Yang, H. M., Zhong, Z. K., Yu, W. H., Wang, H. and Zhou, C. H. (2014) ‘Effects of acid treatments on bamboo cellulose nanocrystals’, ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING. doi: 10.1002/apj.1812.

Zhao, Y., Zhang, Y., Lindström, M. E. and Li, J. (2015) ‘Tunicate cellulose nanocrystals: Preparation, neat films and nanocomposite films with glucomannans’, Carbohydrate Polymers. Elsevier Ltd., 117, pp. 286–296. doi: 10.1016/j.carbpol.2014.09.020.


Article Metrics


Abstract view : 15 times
PDF view : 7 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 JURNAL SELULOSA
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.