Identifikasi Senyawa Asam Lemak Volatil dari Air Limbah Industri Minyak Kelapa Sawit untuk Produksi Polihidroksialkanoat oleh Ralstonia eutropha JMP 134

Martha Aznury(1*), Tjandra Setiadi(2)
(1) Teknik Kimia, Politeknik Sriwijaya
(2) Program Studi Teknik Kimia, Institut Teknologi Bandung
(*) Corresponding Author
DOI: http://dx.doi.org/10.25269/jsel.v11i01.340

Abstract

Identification of Volatile Fatty Acids from Palm Oil Mill Effluent for Polyhydroxyalkanoate Production by Ralstonia eutropha JMP 134

 

Abstract

 

Polyhydroxyalkanoate (PHA) is a bioplastic which is derived from bacterial fermentation. In this study, PHA is produced by utilizing Ralstonia eutropha JMP 134 and volatile fatty acids (VFA) from palm oil industrial wastewater as a precursor. The aim of this research is to study the effect of carbon source, addition time, and VFA concentration on PHA production by fermentation using Ralstonia eutropha JMP 134 in batch. PHA and dry cell weight (DCW) concentrations obtained by adding VFA from palm oil industrial wastewater in batches at 20 and 40 hours were 0.014 g/L.hour, 2.76 g/L and 3.66 g/L, respectively. The results also showed that the time of adding VFA greatly affected cell growth, with the best addition time being after the 20th hour.

 

Keywords: palm oil industrial wastewater, polyhydroxyalkanoate (PHA), batch, Ralstonia eutropha JMP 134, volatile fatty acids (VFA)

 

Abstrak

 

Polihidroksialkanoat (PHA) adalah bioplastik yang diproses melalui proses fermentasi dengan mikroba. Pada penelitian ini, PHA diproduksi dengan menggunakan Ralstonia eutropha JMP 134 dan memanfaatkan asam lemak volatil (ALV) dari air limbah industri minyak kelapa sawit sebagai prekursor. Penelitian ditujukan mempelajari pengaruh sumber karbon, waktu penambahan, dan konsentrasi ALV terhadap  poduksi PHA yang difermentasi menggunakan Ralstonia eutropha JMP 134 secara batch. Konsentrasi PHA dan berat kering sel (BKS) yang diperoleh pada penambahan ALV dari air limbah industri kelapa sawit secara batch pada jam ke-20 dan 40 masing-masing bernilai 0,014 g/L.jam,  2,76 g/L dan 3,66 g/L. Hasil penelitian memperlihatkan pula bahwa waktu penambahan ALV sangat mempengaruhi pertumbuhan sel, dengan waktu penambahan yang terbaik adalah setelah pada jam ke-20.

 

Kata kunci: air limbah industri minyak kelapa sawit, polihidroksialkanoat (PHA), batch, Ralstonia eutropha JMP 134, asam lemak volatil (ALV)

 

Keywords

palm oil industrial wastewater; polyhydroxyalkanoate; PHA; batch; Ralstonia eutropha JMP 134; volatile fatty acids; VFA; air limbah industri minyak kelapa sawit; polihidroksialkanoat; asam lemak volatil (ALV)

Full Text:

PDF

References

APHA (1999) Standard Methods for the Examination of Water and Wastewater. 17th edn. Washington, DC: American Public Health Association, American Water Works Association, Water Pollution Control Federation.

Atasoy, M., Eyice, Ö. and Cetecioglu, Z. (2020) ‘Volatile fatty acid production from semi-synthetic milk processing wastewater under alkali pH: The pearls and pitfalls of microbial culture’, Bioresource Technology, 297, p. 122415. doi: 10.1016/j.biortech.2019.122415.

BPS (2018) Produksi Perkebunan Besar menurut Jenis Tanaman, Indonesia (Ton), 1995 - 2018. Available at: http://www.bps.go.id (Accessed: 4 September 2020).

Cerrone, F., Choudhari, S. K., Davis, R., Cysneiros, D., O’Flaherty, V., Duane, G., Casey, E., Guzik, M. W., Kenny, S. T., Babu, R. P. and O’Connor, K. (2014) ‘Medium chain length polyhydroxyalkanoate (mcl-PHA) production from volatile fatty acids derived from the anaerobic digestion of grass’, Applied Microbiology and Biotechnology, 98(2), pp. 611–620. doi: 10.1007/s00253-013-5323-x.

Chen, H., Meng, H., Nie, Z. and Zhang, M. (2013) ‘Polyhydroxyalkanoate production from fermented volatile fatty acids: Effect of pH and feeding regimes’, Bioresource Technology, 128, pp. 533–538. doi: 10.1016/j.biortech.2012.10.121.

Chinwetkitvanich, S. and Jaikawna, H. (2015) ‘Volatile Fatty Acids (VFAs) production from Palm Oil Mill Effluent (POME) fermentation’, in Chan, D. (ed.) Environmental Science and Information Application Technology. CRC Press. doi: 10.1201/b18559-27.

Defoirdt, T., Boon, N., Sorgeloos, P., Verstraete, W. and Bossier, P. (2009) ‘Short-chain fatty acids and poly-β-hydroxyalkanoates: (New) Biocontrol agents for a sustainable animal production’, Biotechnology Advances, 27(6), pp. 680–685. doi: 10.1016/j.biotechadv.2009.04.026.

Hamzah, M. A. F., Jahim, J. M., Abdul, P. M. and Asis, A. J. (2019) ‘Investigation of Temperature Effect on Start-Up Operation from Anaerobic Digestion of Acidified Palm Oil Mill Effluent’, Energies, 12(13), p. 2473. doi: 10.3390/en12132473.

Huang, L., Chen, Z., Wen, Q., Ji, Y., Wu, Z. and Lee, D.-J. (2020) ‘Toward flexible regulation of polyhydroxyalkanoate composition based on substrate feeding strategy: Insights into microbial community and metabolic features’, Bioresource Technology, 296, p. 122369. doi: 10.1016/j.biortech.2019.122369.

Koller, M. (2018) ‘A Review on Established and Emerging Fermentation Schemes for Microbial Production of Polyhydroxyalkanoate (PHA) Biopolyesters’, Fermentation, 4(2), pp. 1–30. doi: 10.3390/fermentation4020030.

Law, J. H. and Slepecky, R. A. (1961) ‘Assay of poly-β-hydroxybutyric acid’, Journal of Bacteriology, 82(1), pp. 33–36. doi: 10.1128/jb.82.1.33-36.1961.

Lee, W. S., Chua, A. S. M., Yeoh, H. K. and Ngoh, G. C. (2014) ‘Influence of temperature on the bioconversion of palm oil mill effluent into volatile fatty acids as precursor to the production of polyhydroxyalkanoates’, Journal of Chemical Technology & Biotechnology, 89(7), pp. 1038–1043. doi: 10.1002/jctb.4197.

Mamimin, C., Prasertsan, P., Kongjan, P. and O-Thong, S. (2017) ‘Effects of volatile fatty acids in biohydrogen effluent on biohythane production from palm oil mill effluent under thermophilic condition’, Electronic Journal of Biotechnology, 29, pp. 78–85. doi: 10.1016/j.ejbt.2017.07.006.

Meereboer, K. W., Misra, M. and Mohanty, A. K. (2020) ‘Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites’, Green Chemistry, 22(17), pp. 5519–5558. doi: 10.1039/D0GC01647K.

Oliveira, G. H. D., Zaiat, M., Rodrigues, J. A. D., Ramsay, J. A. and Ramsay, B. A. (2020) ‘Towards the Production of mcl-PHA with Enriched Dominant Monomer Content: Process Development for the Sugarcane Biorefinery Context’, Journal of Polymers and the Environment, 28(3), pp. 844–853. doi: 10.1007/s10924-019-01637-2.

Patel, A., Sarkar, O., Rova, U., Christakopoulos, P. and Matsakas, L. (2021) ‘Valorization of volatile fatty acids derived from low-cost organic waste for lipogenesis in oleaginous microorganisms-A review’, Bioresource Technology, 321, p. 124457. doi: 10.1016/j.biortech.2020.124457.

Perez-Zabaleta, M., Atasoy, M., Khatami, K., Eriksson, E. and Cetecioglu, Z. (2021) ‘Bio-based conversion of volatile fatty acids from waste streams to polyhydroxyalkanoates using mixed microbial cultures’, Bioresource Technology, 323, p. 124604. doi: 10.1016/j.biortech.2020.124604.

Ramos-Suarez, M., Zhang, Y. and Outram, V. (2021) ‘Current perspectives on acidogenic fermentation to produce volatile fatty acids from waste’, Reviews in Environmental Science and Bio/Technology, 20(2), pp. 439–478. doi: 10.1007/s11157-021-09566-0.

Seadi, T. Al, Rutz, D., Prassl, H., Köttner, M., Finsterwalder, T., Volk, S. and Janssen, R. (2016) Biogas handbook. Esbjerg, Denmark: University of Southern Denmark Esbjerg, Niels Bohrs Vej 9-10.

Setiadi, T., Aznury, M., Trianto, A. and Pancoro, A. (2015) ‘Production of polyhydroxyalkanoate (PHA) by Ralstonia eutropha JMP 134 with volatile fatty acids from palm oil mill effluent as precursors’, Water Science and Technology, 72(11), pp. 1889–1895. doi: 10.2166/wst.2015.391.

Tan, G.-Y., Chen, C.-L., Li, L., Ge, L., Wang, L., Razaad, I., Li, Y., Zhao, L., Mo, Y. and Wang, J.-Y. (2014) ‘Start a Research on Biopolymer Polyhydroxyalkanoate (PHA): A Review’, Polymers, 6(3), pp. 706–754. doi: 10.3390/polym6030706.

Tiang, MF., Nordin,D., Abdul, PM.,(2020), ‘Effect of Feeding Strategies and Inoculums Applied on Two-Stage Biosynthesis of Polyhydroxyalkanoates from Palm Oil Mill Effluent’, Journal of Polymers and the Environment, 28: 7,1934-1943.

Wang, Q. and Nomura, C. T. (2010) ‘Monitoring differences in gene expression levels and polyhydroxyalkanoate (PHA) production in Pseudomonas putida KT2440 grown on different carbon sources’, Journal of Bioscience and Bioengineering, 110(6), pp. 653–659. doi: 10.1016/j.jbiosc.2010.08.001.

Zhang, D., Jiang, H., Chang, J., Sun, J., Tu, W. and Wang, H. (2019) ‘Effect of thermal hydrolysis pretreatment on volatile fatty acids production in sludge acidification and subsequent polyhydroxyalkanoates production’, Bioresource Technology, 279, pp. 92–100. doi: 10.1016/j.biortech.2019.01.077.


Article Metrics


Abstract view : 62 times
PDF view : 43 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 JURNAL SELULOSA
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.