Optimasi Kadar Ultimate dan Tingkat Kebasaan Bio-arang Limbah Kayu Durian sebagai Pembenah Tanah

Heri Soedarmanto(1), Evy Setiawaty(2*), Taufik Iskandar(3)
(1) Politeknik Negeri Banjarmasin, Jl. Brigjen H. Hasan Basri Kayu Tangi, Banjarmasin-Indonesia
(2) Balai Riset dan Standardisasi Industri Banjarbaru
(3) Universitas Tribhuwana Tunggadewi, Malang
(*) Corresponding Author
DOI: http://dx.doi.org/10.25269/jsel.v11i02.332

Abstract

Konversi biomassa melalui pirolisis menghasilkan bio-arang, bio-minyak dan gas. Pirolisis biomassa dipengaruhi oleh kondisi pirolisis seperti bahan baku dan suhu pirolisis. Tujuan dari penelitian ini adalah menganalisis kondisi optimum kadar ultimate (CHO) dan pH bio-arang berdasarkan ukuran partikel bahan baku limbah kayu durian dan suhu pirolisis sebagai pembenah tanah. Limbah kayu durian yang digunakan dalam penelitian ini berukuran diameter 0,17–0,42 mm; 0,42–1,00 mm; dan 1,00–2,83 mm, dengan variasi suhu pirolisis 350°C, 450°C, dan 550°C sebanyak tiga kali ulangan. Optimasi menggunakan metode Response Surface Methodology. Berdasarkan model kuadratik, didapatkan kadar karbon optimum bio-arang sebesar 81,78% dengan ukuran partikel bahan baku pada 2,09 mm dan suhu pirolisis 530,5oC. Kadar hidrogen optimum bio-arang sebesar 3,35% dengan ukuran partikel bahan baku 2,89 mm dan suhu pirolisis 547,4oC. Kadar oksigen optimum bio-arang sebesar 12,22% dengan ukuran partikel bahan baku 1,89 mm dan suhu pirolisis 529,5oC. pH optimum bio-arang sebesar 8,35 dengan ukuran partikel bahan baku 0,6 mm dan suhu pirolisis 521,8oC. Kondisi proses terbaik untuk menghasilkan kadar ultimate dan pH yang paling optimal berada pada range ukuran diameter bahan baku 0,6 mm–2,89 mm dan suhu pirolisis sebesar 521,8oC–547,4oC. 

 

The Optimization of Ultimate Levels and Basicity of Durian Wood Waste Biochar as Soil Amendment

Abstract

Biomass conversion through pyrolysis produces biochar, bio-oil and gas. Pyrolysis of biomass is influenced by pyrolysis conditions such as raw materials and pyrolysis temperature. The purpose of this study was to analyze the optimum conditions for ultimate levels (CHO) and pH of biochar based on the particle size of the durian wood waste and the pyrolysis temperature as soil amendment. Particle sizes of durian waste were 0.17–0.42 mm; 0.42–1.00 mm; and 1.00–2.83 mm in diameter where pyrolysis temperatures were 350°C; 450°C; and 550°C. Optimization was used by the Response Surface Methodology method. Based on the quadratic model, the optimum carbon content of biochar was 81.78% with the particle size at 2.09 mm and the pyrolysis temperature of 530.5oC. The optimum hydrogen content of biochar was 3.35% with a particle size of 2.89 mm and a pyrolysis temperature of 547.4oC. The optimum oxygen content of biochar was 12.22% with a particle size of 1.89 mm and a pyrolysis temperature of 529.5oC. The optimum pH of biochar was 8.35 with a particle size of 0.6 mm and a pyrolysis temperature of 521.8oC. The most optimal ultimate levels and pH were in the diameter size range of 0.6 mm-2.89 mm and pyrolysis temperature of 521.8oC-547.4oC.

Keywords

limbah kayu durian; pirolisis; kadar ultimat; pH; bio-arang; durian wood waste; pyrolysis; ultimate level; pH; biochar

Full Text:

PDF

References

Abbas, Q., Liu, G., Yousaf, B., Ali, M. U., Ullah, H., Munir, M. A. M. and Liu, R. (2018) ‘Contrasting effects of operating conditions and biomass particle size on bulk characteristics and surface chemistry of rice husk derived-biochars’, Journal of Analytical and Applied Pyrolysis. Elsevier, 134(December 2017), pp. 281–292. doi: 10.1016/j.jaap.2018.06.018.

Alonso, D. M., Wettstein, S. G. and Dumesic, J. A. (2012) ‘Bimetallic catalysts for upgrading of biomass to fuels and chemicals’, Chemical Society Reviews, 41(24), pp. 8075–8098. doi: 10.1039/c2cs35188a.

Amonette, J. and Joseph, S. (2009) ‘Characteristics of biochar: micro chemical properties’, in Lehmann, J. and Joseph, S. (eds) Biochar for Environmental Management: Science and Technology. London: Earthscan, pp. 33–52. doi: 10.4236/am.2012.36076.

Awasthi, M. K., Wang, M., Chen, H., Wang, Q., Zhao, J., Ren, X., Li, D. sheng, Awasthi, S. K., Shen, F., Li, R. and Zhang, Z. (2017) ‘Heterogeneity of biochar amendment to improve the carbon and nitrogen sequestration through reduce the greenhouse gases emissions during sewage sludge composting’, Bioresource Technology. Elsevier Ltd, 224, pp. 428–438. doi: 10.1016/j.biortech.2016.11.014.

Brewer, C. E. (2012) Biochar characterization and engineering, Graduate Theses and Dissertations. Iowa State University. doi: 12284.

Bridgwater, A. V. (2012) ‘Review of fast pyrolysis of biomass and product upgrading’, Biomass and Bioenergy. Elsevier Ltd, 38, pp. 68–94. doi: 10.1016/j.biombioe.2011.01.048.

Edeh, I. G. and Mašek, O. (2021) ‘The role of biochar particle size and hydrophobicity in improving soil hydraulic properties’, European Journal of Soil Science, (February), pp. 1–14. doi: 10.1111/ejss.13138.

Harvey, O. R., Herbert, B. E., Rhue, R. D. and Kuo, L. J. (2011) ‘Metal interactions at the biochar-water interface: Energetics and structure-sorption relationships elucidated by flow adsorption microcalorimetry’, Environmental Science and Technology, 45(13), pp. 5550–5556. doi: 10.1021/es104401h.

Imam, T. and Capareda, S. (2012) ‘Characterization of bio-oil, syn-gas and bio-char from switchgrass pyrolysis at various temperatures’, Journal of Analytical and Applied Pyrolysis. Elsevier B.V., 93, pp. 170–177. doi: 10.1016/j.jaap.2011.11.010.

Liu, Z., Dugan, B., Masiello, C. A. and Gonnermann, H. M. (2017) ‘Biochar particle size, shape, and porosity act together to influence soil water properties’, PLoS ONE, 12(6), pp. 1–19. doi: 10.1371/journal.pone.0179079.

Mohan, D., Abhishek, K., Sarswat, A., Patel, M., Singh, P. and Pittman, C. U. (2018) ‘Biochar production and applications in soil fertility and carbon sequestration-a sustainable solution to crop-residue burning in India’, RSC Advances. Royal Society of Chemistry, 8(1), pp. 508–520. doi: 10.1039/c7ra10353k.

Mohan, D., Pittman, C. U. and Philip, S. (2017) ‘Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review Dinesh’, Progress in Energy and Combustion Science, 62(4), pp. 848–889.

Novak, J., Lima, I., Xing, B., Gaskin, J., Steiner, C., Das, K., Ahmedna, M., Rehrah, D., Watts, D. and Busscher, W. (2009) ‘Characterization of designer biochar produced at different temperatures and their effects on a loamy sand’, Annals of Environmental Science, 3(1), pp. 195–206.

Onay, O. (2007) ‘Influence of pyrolysis temperature and heating rate on the production of bio-oil and char from safflower seed by pyrolysis, using a well-swept fixed-bed reactor’, Fuel Processing Technology, 88(5), pp. 523–531. doi: 10.1016/j.fuproc.2007.01.001.

Oramahi, H. A., Wahdina, Diba, F., Nurhaida and Yoshimura, T. (2015) ‘Optimization of production of lignocellulosic biomass bio-oil from oil palm trunk’, Procedia Environmental Sciences. Elsevier B.V., 28(December), pp. 769–777. doi: 10.1016/j.proenv.2015.07.090.

Oramahi, H. A. and Diba, F. (2013) ‘Maximizing the production of liquid smoke from bark of durio by studying its potential compounds’, Procedia Environmental Sciences. Elsevier B.V., 17, pp. 60–69. doi: 10.1016/j.proenv.2013.02.012.

Osman, N. B., Shamsuddin, N. and Uemura, Y. (2016) ‘Activated carbon of oil palm empty fruit bunch (EFB); core and shaggy’, Procedia Engineering. The Author(s), 148, pp. 758–764. doi: 10.1016/j.proeng.2016.06.610.

Setiawati, E., Prijono, S., Mardiana, D., Annisa, W. and . S. (2019) ‘Effects of durian wood waste biochar on acid sulphate soil properties and rice yield in Indonesia’, Journal of Agronomy, 18(2), pp. 71–79. doi: 10.3923/ja.2019.71.79.

Sophia Ayyappan, C., Bhalambaal, V. M. and Kumar, S. (2018) ‘Effect of biochar on bio-electrochemical dye degradation and energy production’, Bioresource Technology, 251, pp. 165–170. doi: 10.1016/j.biortech.2017.12.043.

Tag, A. T., Duman, G., Ucar, S. and Yanik, J. (2016) ‘Effects of feedstock type and pyrolysis temperature on potential applications of biochar’, Journal of Analytical and Applied Pyrolysis. Elsevier B.V., 120, pp. 200–206. doi: 10.1016/j.jaap.2016.05.006.

Zaccheo, P., Crippa, L. and Cattivello, C. (2014) ‘Liming power of different particle fractions of biochar’, Acta Horticulturae, 1034, pp. 363–368. doi: 10.17660/ActaHortic.2014.1034.45.


Article Metrics


Abstract view : 9 times
PDF view : 4 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 JURNAL SELULOSA
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.