Cellulose Microfibers from Salacca Midrib Fiber Isolated by the Mechanical Treatment

Venditias Yudha(1*), Ferriawan Yudhanto(2), Heru Santoso Budi Rochardjo(3), Satriawan Dini Hariyanto(4)
(1) Institut Sains & Teknologi AKPRIND Yogyakarta
(2) Universitas Muhammadiyah Yogyakarta
(3) Universitas Gadjah Mada
(4) Institut Sains & Teknologi AKPRIND
(*) Corresponding Author
DOI: http://dx.doi.org/10.25269/jsel.v11i01.319

Abstract

Salacca midrib fibers are abundant natural waste in Turi, Sleman Regency, Daerah Istimewa Yogyakarta. Cellulose Microfibers from the salacca midrib fiber has been isolated by mechanical treatment and successfully has good physical characteristics. Cellulose fibers with micro sizes can strengthen the bond effect between the matrix and the fiber due to the vast contact area. The method for isolated cellulose microfibers by mechanical treatment for speed rotation of 5000, 10000 and 15000 rpm. Mechanical stirrer treatment aims to fibrillation and reduces fiber dimensions because of their high rotation. The characterization by XRD, FTIR, and SEM. The XRD results showed that the mechanical stirrer treatment did not damage the crystallinity index of cellulose microfibers. The crystallinity index of the raw material is 64.3%, increased to 79.1% for the microfiber cellulose crystallinity index. Identification of functional groups using FTIR did not show changes in cellulose compounds resulting from mechanical treatment. Morphological observation of fibers by SEM shows that the diameter cellulose microfibers size obtained from salacca midrib fiber ranges 5-10 µm with 100-300 µm in length. Cellulose microfibers have potential materials as reinforcement in the micro composite and extraction into nanocellulose materials.

Keywords

Salacca midrib fiber; cellulose microfibers; mechanical treatment; serat pelepah salak; selulosa mikrofiber; perlakuan mekanis

Full Text:

PDF

References

Brinchi, L., Cotana, F., Fortunati, E. dan Kenny, J. (2013). Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications. Carbohydrate Polymers, Volume 94, p. 154– 169.

Chaker, A., Alila, S., Mutje´, Pere., Vilar, M. R., Boufi, Sami. (2013). Key role of the hemicellulose content and the cell morphology on the nanofibrillation effectiveness of cellulose pulps. Cellulose, Volume 20, p. 2863–2875.

Ferrer, A., Salas, C. and Rojas, O. J. (2016). Physical, thermal, chemical and rheological characterization of cellulosic microfibrils and microparticles produced from soybean hulls. Industrial Crops and Products, 84, 337-343.

Ibrahim, M. M., Dufresne, A., El-Zawawy, W. K. and Agblevor, F. A. (2010). Banana fibers and microfibrils as lignocellulosic reinforcements in polymer composites. Carbohydrate polymers, 81(4), 811-819.

Isroi, I. and Cifriadi, A. (2018). Oxidation of Cellulose from Oil Palm Empty Fruit Bunch Using Hydrogen Peroxide in Alkaline Condition. Jurnal Selulosa, 8(02), 51-60.

Jankowska, I., Ławniczak, P., Pogorzelec-Glaser, K., Łapiński, A., Pankiewicz, R. and Tritt-Goc, J. (2020). Cellulose microfibers surface treated with imidazole as new proton conductors. Materials Chemistry and Physics, 239, 122056.

Lamaming, J., Sharudin, N. H., Hashim, R. and Sulaiman, O. (2016). Characterization of Cellulose Microfibers Isolated from Rubberwood (Hevea brasiliensis). International Journal on Advanced Science, Engineering and Information Technology, 6(2), 170-174.

Li, X., Tabii, L. G. dan Panigrahi, S. (2007). Chemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composite: A Review. Journal of Polymers and the Environment, pp. 25-33.

Liu, Y., Liu, A., Ibrahim, S. A., Yang, H. and Huang, W. (2018). Isolation and characterization of microcrystalline cellulose from pomelo peel. International journal of biological macromolecules, 111, 717-721.

Lismeri, L., Darni, Y. and Dimas, M. (2017). Isolasi Mikro fibril Selulosa Dengan Pretreatment Alkali Dari Limbah Batang Pisang. In prosiding seminar nasional baristand (pp. 40-45). Baristand Lampung.

Maheswari, C. U., Reddy, K. O., Muzenda, E., Guduri, B. R. and Rajulu, A. V. (2012). Extraction and characterization of cellulose microfibrils from agricultural residue–Cocos nucifera L. Biomass and bioenergy, 46, 555-563.

Martínez-Sanz, M., Pettolino, F., Flanagan, B., Gidley, M. J. and Gilbert, E. P. (2017). Structure of cellulose microfibrils in mature cotton fibres. Carbohydrate polymers, 175, 450-463.

Mohammed, L., Ansari, M. N., Pua, G., Jawaid, M. and Islam, M. S. (2015). A review on natural fiber reinforced polymer composite and its applications. International Journal of Polymer Science, 2015.

Mwaikambo, L. Y. and Ansell, M. P. (2002). Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. Journal of applied polymer science, 84(12), 2222-2234.

Pacaphol, K. and Aht-Ong, D. (2017). Preparation of hemp nanofibers from agricultural waste by mechanical defibrillation in water. Journal of Cleaner Production, 142, 1283-1295.

Panthapulakkal, S. and Sain, M. (2012). Preparation and characterization of cellulose nanofibril films from wood fibre and their thermoplastic polycarbonate composites. International Journal of Polymer Science, 2012.

Reddy, K. O., Shukla, M., Maheswari, C. U. and Rajulu, A. V. (2012). Mechanical and physical characterization of sodium hydroxide treated Borassus fruit fibers. Journal of forestry research, 23(4), 667-674.

Rochardjo, H. S. B., Jamasri, J. and Yudhanto, F. (2019). Extraction of natural fibers by high-speed blender to produce cellulose sheet composite. International Review of Mechanical Engineering, 13(12), 691-699.

Saputri, L. H., Sukmawan, R., Rochardjo, H. S. B. and Rochmadi, R. (2018, July). Isolasi Nano Selulosa dari Ampas Tebu dengan Proses Blending pada Berbagai Variasi Konsentrasi. In Seminar Nasional Teknik Kimia Kejuangan (p. 10).

Sofla, M. R. K., Batchelor, W., Kosinkova, J., Pepper, R., Brown, R. and Rainey, T. (2019). Cellulose nanofibres from bagasse using a high-speed blender and acetylation as a pretreatment. Cellulose, 26(8), 4799-4814.

Sonia, A. and Dasan, K. P. (2013). Chemical, morphology and thermal evaluation of cellulose microfibers obtained from Hibiscus sabdariffa. Carbohydrate polymers, 92(1), 668-674.

Sukmawan, R., Saputri, L. H., Rochmadi, R. and Rochardjo, H. S. B. (2019). The effects of the blending condition on the morphology, crystallinity and thermal stability of cellulose microfibers obtained from bagasse. Indonesian Journal of Chemistry, 19(1), 166-175.

Syafri, E., Wahono, S., Irwan, A., Asrofi, M., Sari, N. H. and Fudholi, A. (2019). Characterization and properties of cellulose microfibers from water hyacinth filled sago starch biocomposites. International journal of biological macromolecules, 137, 119-125.

Tonoli, G. H. D., Teixeira, E. M., Corrêa, A. C., Marconcini, J. M., Caixeta, L. A., Pereira-da-Silva, M. A. and Mattoso, L. H. C. (2012). Cellulose micro/nanofibres from Eucalyptus kraft pulp: preparation and properties. Carbohydrate polymers, 89(1), 80-88.

Uetani, K. and Yano, H. (2011). Nanofibrillation of wood pulp using a high-speed blender. Biomacromolecules, 12(2), 348-353.

Xie, J., Hse, C.-Y., Hoop, C. F. De., Hu, T., Qi, Jinqiu., Shupe, Todd F., (2016). Isolation and characterization of cellulose nanofibers from bamboo using microwave liquefaction combined with chemical treatment and ultrasonication. Carbohydrate Polymers, Volume 151, p. 725–734.

Yudha, V., Rochardjo, H. S. B., Jamasri, R. W., Yudhanto, F. and Darmanto, S. (2018, November). Isolation of cellulose from salacca midrib fibers by chemical treatments. In 3rd Annual Applied Science and Engineering Conference (AASEC 2018), IOP Conf. Series: Materials Science and Engineering.

Yudhanto, F., Jamasri and Rochardjo, H. S. B., (2018). Application of taguchi method for selection parameter bleaching treatments against mechanical and physical properties of agave cantala fiber. Banda Aceh, IOP Conf. Series: Materials Science and Engineering.


Article Metrics


Abstract view : 17 times
PDF view : 6 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 JURNAL SELULOSA
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.