Analisis Holoselulosa: Tinjauan Metode Analisis Kimia Konvensional

Chandra Apriana Purwita(1*), Aminudin Sulaeman(2), Henry Setiyanto(3)
(1) Balai Besar Pulp dan Kertas, Kementerian Perindustrian; Program Studi Kimia, Institut Teknologi Bandung
(2) Program Studi Kimia, Institut Teknologi Bandung
(3) Program Studi Kimia, Institut Teknologi Bandung
(*) Corresponding Author
DOI: http://dx.doi.org/10.25269/jsel.v10i02.301

Abstract

Holoselulosa merupakan fraksi karbohidrat yang merupakan gabungan antara selulosa dan hemiselulosa. Fraksi holoselulosa menjadi penting karena merupakan bahan baku yang digunakan menjadi berbagai produk yang memiliki bernilai tinggi. Kandungan holoselulosa bervariasi di antara berbagai spesies kayu. Analisis holoselulosa penting untuk memperoleh informasi mengenai karakteristik dan kualitas bahan baku, mengoptimalkan pemanfaatan sumber bahan baku, dan meningkatkan efisiensi proses sehingga memungkinan komersialisasi proses konversi biomassa menjadi bahan lain yang berekonomis tinggi. Prinsip analisis holoselulosa metode kimia konvensional adalah fraksinasi dan isolasi yaitu dengan menyisihkan lignin, ekstraktif, dan abu, namun menjaga selulosa dan hemiselulosa tetap utuh. Metode analisis holoselulosa biasanya menggunakan metode delignifikasi, menggunakan reagen pengoksidasi kuat pada pH rendah atau tinggi dan suhu tinggi. Metode tersebut meliputi klor dioksida, klor-piridin, klor-etanol amina, klor-1,4-dioksan, klorit asam, dan asam perasetat. Metode natrium klorit banyak digunakan untuk analisis holoselulosa dengan karena prosedur pemisahan sederhana dan delignifikasi cepat. Artikel ini memaparkan sejumlah metode analisis holoselulosa, prinsip penentuan, reaksi, keunggulan dan kelemahan masing-masing metode sehingga dapat memberikan gambaran untuk memilih metode yang sesuai dan akurasi masing-masing metode tersebut.


Holocellulose Analysis: A Review of Conventional Chemical Analysis Methods

Abstract

Holocellulose is a carbohydrate fraction that is a combination of cellulose and hemicellulose. Holocellulose fraction is important because it is the raw material used to be processed into various high-value products. Holocellulose content varies among various wood species. Holocellulose analysis is important to gain information on the characteristics and quality of raw materials, optimize the utilization of raw material sources, and improve process efficiency so that it is possible to commercialize the process of converting biomass into other high-economical materials. The principle of holocellulose analysis by conventional chemistry method is fractionation and isolation by removing lignin, extractives, and ash, but keeping cellulose and hemicellulose intact. Holocellulose analysis methods usually use the delignification method, using strong oxidizing reagents in low or high pH and high temperatures. Such methods include chlorine dioxide, chlorine-pyridine, chlorine-ethanol amine, chlor-1,4-dioxane, acid chlorite, and peracetic acid. The sodium chlorite method is widely used for the analysis holocellulose because of its simple separation procedure and rapid delignification. This article presents several holocellulose analysis methods, principles of determination, reactions, strengths, and weaknesses of each method to provide an overview for selecting the appropriate method and the accuracy of each method.

Keywords: holocellulose analysis, conventional analytical chemistry method, delignification

Keywords

analisis holoselulosa; metode analisis kimia konvensional; delignifikasi

Full Text:

PDF

References

Álvarez, A., Cachero, S., González-Sánchez, C., Montejo-Bernardo, J., Pizarro, C. and Bueno, J. L. (2018) ‘Novel method for holocellulose analysis of non-woody biomass wastes’, Carbohydrate Polymers, 189, pp. 250–256. doi: 10.1016/j.carbpol.2018.02.043.

American Society for Testing and Materials (1958) ASTM D1104 : Method of Test for Holocellulose in Wood.

Amini, M. H. M., Rasat, M. S. M., Ahmad, M. I., Wahab, R., Elham, P., Wan, W. M. N. A. R. and Ramle, N. H. (2017) ‘Chemical composition of small diameter wild Acacia mangium species’, ARPN Journal of Engineering and Applied Sciences, 12(10), pp. 3169–3173.

Ateş, S., Deniz, İ., Kirci, H., Atik, C. and Okan, O. T. (2014) ‘Comparison of pulping and bleaching behaviors of some agricultural residues’, Turkish Journal of Agriculture and Forestry, 39(1), pp. 144–153. doi: 10.3906/tar-1403-41.

Baeza, J. and Freer, J. (2001) ‘Chemical Characterization of Wood and Its Components’, in Hon, D. N.-S. and Shiraishi, N. (eds) Wood and Cellulosic Chemistry. 2nd Editio. New York: Marcel Dekker, pp. 275–384.

Bajpai, P. (2018) Biermann’s Handbook of Pulp and Paper. 3rd edn, Biermann’s Handbook of Pulp and Paper. 3rd edn. Amsterdam: Elsevier. doi: 10.1016/c2017-0-00530-x.

Bao, W., O’Malley, D. M. and Sederoff, R. R. (1992) ‘Wood contains a cell-wall structural protein’, Proceedings of the National Academy of Sciences of the United States of America, 89(14), pp. 6604–6608. doi: 10.1073/pnas.89.14.6604.

Basu, P. (2013) Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory. Second, Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory. Second. London: Academic Press. doi: 10.1016/C2011-0-07564-6.

Van Beckum, W. G. and Ritter, G. J. (1937) ‘Rapid method for determination of holocellulose and cross and bevan cellulose in wood’, Paper Trade Journal, 104(19), pp. 49–50.

Browning, B. L. (1967) Methods of Wood Chemistry. New York: Interscience Publishers.

Carrier, M., Loppinet-Serani, A., Denux, D., Lasnier, J. M., Ham-Pichavant, F., Cansell, F. and Aymonier, C. (2011) ‘Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass’, Biomass and Bioenergy, 35(1), pp. 298–307. doi: 10.1016/j.biombioe.2010.08.067.

Chen, H. (2014) Biotechnology of Lignocellulose, Biotechnology of Lignocellulose. Beijing: Chemical Industry Press and Springer. doi: 10.1007/978-94-007-6898-7.

Deshwal, B. R., Jo, H. D. and Lee, H. K. (2004) ‘Reaction kinetics of decomposition of acidic sodium chlorite’, Canadian Journal of Chemical Engineering, 82(3), pp. 619–623. doi: 10.1002/cjce.5450820323.

Durmaz, E., Ateş, S., Abuamoud, M. M. M. and Yiğit, N. (2018) ‘Comparison of some anatomical, chemical and fibrous characteristics of Turkish Pine (Pinus Brutia Ten.) sampled from different regions’, Kastamonu Üniversitesi Orman Fakültesi Dergisi, 18(1), pp. 75–82. doi: 10.17475/kastorman.364592.

Ely, R. E. and Moore, L. A. (1955) ‘Yields of holocellulose prepared from ruminant feces by acid chlorite treatment’, Journal of Dairy Science. Elsevier, 38(9), pp. 1017–1022. doi: 10.3168/jds.S0022-0302(55)95071-2.

Gordon, G. (1983) ‘Improved methods of analysis for chlorate, chlorite and hypochlorite ions at the sub-mg/L level’, Proceedings - AWWA Water Quality Technology Conference, pp. 175–189.

Gulsoy, S. K. and Tufek, S. (2013) ‘Effect of chip mixing ratio of Pinus pinaster and Populus tremula on Kraft pulp and paper properties’, Industrial & Engineering Chemistry Research, 52(6), pp. 2304–2308. doi: 10.1021/ie302709e.

Holmes, G. W. and Kurth, E. F. (1959) ‘Improvements in the determination of holocellulose’, Technical Association of Pulp and Paper Industry, 42, pp. 837–840.

Hou, Y., Liu, C., Xu, J., Li, Y. and Hu, S. (2016) ‘Application of alkaline ionic liquids in the pretreatment process of eucalyptus kraft pulping’, Bio Resources, 11(4), pp. 9036–9046.

Huang, H., Yu, Y., Qing, Y., Zhang, X. and Cui, J. (2020) ‘Ultralight industrial bamboo residue-derived holocellulose thermal insulation aerogels with hydrophobic and fire resistant properties’, Materials, 12(2), p. 447.

Ishizuka, S., Sakai, Y. and Tanaka-Oda, A. (2014) ‘Quantifying lignin and holocellulose content in coniferous decayed wood using near-infrared reflectance spectroscopy’, Journal of Forest Research, 19(1), pp. 233–237. doi: 10.1007/s10310-012-0386-6.

Kaur, P. J., Satya, S., Pant, K. K., Naik, S. N. and Kardam, V. (2016) ‘Chemical characterization and decay resistance analysis of smoke treated bamboo species’, European Journal of Wood and Wood Products. Springer Berlin Heidelberg, (March), pp. 10–14. doi: 10.1007/s00107-016-1029-y.

Kothiyal, V., Bhandari, S., Ginwal, H. S. and Gupta, S. (2015) ‘Multi-species NIR calibration for estimating holocellulose in plantation timber’, Wood Science and Technology. Springer Berlin Heidelberg, pp. 769–793. doi: 10.1007/s00226-015-0720-1.

Kumar, B., Bhardwaj, N., Agrawal, K., Chaturvedi, V. and Verma, P. (2020) ‘Current perspective on pretreatment technologies using lignocellulosic biomass: An emerging biorefinery concept’, Fuel Processing Technology, 199(July 2019). doi: 10.1016/j.fuproc.2019.106244.

Liang, L., Wei, L., Fang, G., Xu, F., Deng, Y., Shen, K., Tian, Q., Wu, T. and Zhu, B. (2020) ‘Prediction of holocellulose and lignin content of pulp wood feedstock using near infrared spectroscopy and variable selection’, Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy. Elsevier B.V., 225, p. 117515. doi: 10.1016/j.saa.2019.117515.

Park, C. W., Han, S. Y., Choi, S. K. and Lee, S. H. (2017) ‘Preparation and properties of holocellulose nanofibrils with different hemicellulose content’, BioResources, 12(3), pp. 6298–6308. doi: 10.15376/biores.12.3.6298-6308.

Purwita, C. A. and Sugesty, S. (2018) ‘Pembuatan dan Karakterisasi Dissolving Pulp Serat Panjang dari Bambu Duri (Bambusa blumeana)’, JURNAL SELULOSA, 8(01), p. 21. doi: 10.25269/jsel.v1i01.232.

Rabemanolontsoa, H. and Saka, S. (2011) ‘Holocellulose determination in biomass’, in Yao, T. (ed.) Zero-Carbon Energy Kyoto 2011. Tokyo: Springer, pp. 135–140. doi: 10.1007/978-4-431-54067-0.

Rabemanolontsoa, H. and Saka, S. (2012) ‘Method applicable to characterize various Biomass species in their chemical Composition’, in Proceedings of the 4th AUN/SEED-Net Regional Conference on Biotechnology Faculty of Engineering, Chulalongkorn University and Burapha University, Thailand, pp. 1–6.

Ramawat, K. G. and Ahuja, M. R. (2016) ‘Fiber plants : biology, biotechnology and applications’, Sustainable Development and Biodiversity, 13, p. 263. doi: 10.1007/978-3-319-44570-0.

Ritter, G. J. and Kurth, E. F. (1933) ‘Holocellulose, total carbohydrate fraction of extractive-free maple wood: Its isolation and properties’, Industrial and Engineering Chemistry, 25(11), pp. 1250–1253. doi: 10.1021/ie50287a016.

Saka, S. and Mimori R (1994) ‘The distribution of inorganic constituents in white birch wood as determined by SEM-EDXA.’, Journal of the Japan Wood Research Society, 40(1), pp. 88–94.

Sari, Y. W., Syafitri, U., Sanders, J. P. M. and Bruins, M. E. (2015) ‘How biomass composition determines protein extractability’, Industrial Crops and Products. Elsevier B.V., 70, pp. 125–133. doi: 10.1016/j.indcrop.2015.03.020.

Schmidt, E. and Graumann, E. (1921) ‘Incrusting substances of plants substances. I. Methods for the preparation of pure plant skeletal’, Deusche Chemische Gesellschaft Berichte, 54, pp. 1860–1873.

Sunardia, Istikowatib, W. T. and Sari, D. I. (2019) ‘Extraction of α-cellulose from Eleocharis dulcis holocellulose using NaOH and KOH’, Journal of Physics: Conference Series, 1(1397), pp. 1–7. doi: 10.1088/1742-6596/1397/1/012031.

Suzuki, M. (1953) ‘A study on the deviation between yield and lignin contents of holocellulose’, Journal of the Japanese Technical Association of the Pulp and Paper Industry, 7(1), pp. 9–14.

Taflick, T., Schwendler, L. A., Rosa, S. M. L., Bica, C. I. D. and Nachtigall, S. M. B. (2017) ‘Cellulose nanocrystals from acacia bark–Influence of solvent extraction’, International Journal of Biological Macromolecules. Elsevier B.V., 101, pp. 553–561. doi: 10.1016/j.ijbiomac.2017.03.076.

Taylor, M. C., White, J. F., Vincent, G. P. and Cunningham, G. L. (1940) ‘Sodium chlorite: Properties and reactions’, Industrial and Engineering Chemistry, 32(7), pp. 899–903. doi: 10.1021/ie50367a007.

Technical Association of the Pulp and Paper Industry (1954) T 9m-54 : Holocellulose in Wood.

Thiex, N. J., Manson, H., Anderson, S. and Persson, J. Å. (2002) ‘Determination of crude protein in animal feed, forage, grain, and oilseeds by using block digestion with a copper catalyst and steam distillation into boric acid: Collaborative study’, Journal of AOAC International, 85(2), pp. 309–317. doi: 10.1093/jaoac/85.2.309.

Timell, T. E. (1961) ‘Isolation of galactoglucomannans from the wood of gymnosperms’, Tappi, 44, pp. 88–96.

Vaz, R. P., de Souza Moreira, L. R. and Ferreira Filho, E. X. (2016) ‘An overview of holocellulose-degrading enzyme immobilization for use in bioethanol production’, Journal of Molecular Catalysis B: Enzymatic. Elsevier B.V., 133, pp. 127–135. doi: 10.1016/j.molcatb.2016.08.006.

White, J. F., Taylor, M. C. and Vincent, G. P. (1942) ‘Chemistry of Chlorites’, Industrial & Engineering Chemistry, 34(7), pp. 782–792. doi: 10.1021/ie50391a003.

Wise, L. E. and Jahn, E. C. (1942) Wood Chemistry. 2nd edn. New York: Reinhold.

Wise, L. E., Maxine, M. and D’Addieco, A. A. (1946) ‘Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses’, Paper Trade Journal. doi: 10.1006/jsbi.1999.4118.

Wu, T., Fang, G., Liang, L., Deng, Y., Lin, Y. and Xiong, Z. (2018) ‘Analysis of mixed pulping raw materials of Eucalyptus globulus and Acacia mangium by near infrared spectroscopy technique combined with LASSO algorithm’, BioResources, 13(1), pp. 1348–1359. doi: 10.15376/biores.13.1.1348-1359.

Yang, X., Berthold, F. and Berglund, L. A. (2019) ‘High-density molded cellulose fibers and transparent biocomposites based on oriented holocellulose’, ACS Applied Materials and Interfaces. American Chemical Society, 11(10), pp. 10310–10319. doi: 10.1021/acsami.8b22134.

Yoshihara, K., Kobayashi, T., Fujii, T. and Akamatsu, I. (1984) ‘A novel modification of Klason lignin quantitaitve method’, Japan Tappi Journal, 38(4), pp. 466–475. doi: 10.2524/jtappij.38.466.


Article Metrics


Abstract view : 26 times
PDF view : 13 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 JURNAL SELULOSA
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.