Non-Isothermal Pyrolysis Kinetic Studies of Kraft Pulp Mill Sludge and Its Blending with Coal Powder

Syamsudin Syamsudin(1*), Tobias Richards(2), Herri Susanto(3), Subagjo Subagjo(4)
(1) Balai Besar Pulp dan Kertas
(2) School of Engineering, University of Borås, Allégatan 1, SE-501 90 Borås, Sweden
(3) Chemical Engineering Department, Faculty of Industrial Technology, Institut Teknologi Bandung
(4) Chemical Engineering Department, Faculty of Industrial Technology, Institut Teknologi Bandung
(*) Corresponding Author
DOI: http://dx.doi.org/10.25269/jsel.v9i01.270

Abstract

Non-isothermal pyrolysis of kraft pulp mill sludge and coal has been investigated. Blending sludge with coal resulted time increase to complete the pyrolysis. This phenomenon indicated that volatile matter in coal was more difficult to be degraded. Sludge pyrolysis at 10, 15, and 20°C/min remained residual mass fraction of 64.6% w/w, 62.4% w/w, and 64.4% w/w, respectively. Coal addition into sludge had reduced char yield. Char yield decreasing was due to lower content of coal ash compared to sludge ash. Sludge lost most of its mass at 200C-500°C, reached its peak at 280°C, and became slower at >500°C. Wide range of coal degradation temperature indicated that coal may contain components having a wide range temperature degradation, such as lignin. Based on the curve of mass loss rate of reaction, there were three peaks which indicates three reaction mechanisms of sludge-coal pyrolysis. All peaks followed the mechanism of first order reaction. First peak was likely to occur due to decomposition of hemicellulose and other highly volatile components. Second and third were associate with cellulose and lignin, respectively. The high thermal stability properties lead to a slow degradation of lignin, and its mass loss occurred in the a very wide of temperature range (160-900°C).

 

Studi Kinetika Pirolisis Non-Isotermal Lumpur Industri Pulp Kraft dan Campurannya dengan Serbuk Batubara

Pirolisis non-isotermal lumpur industri pulp kraft dan campurannya dengan serbuk batubara telah diselidiki. Pencampuran lumpur dengan batubara menghasilkan peningkatan waktu untuk menyelesaikan pirolisis. Fenomena ini menunjukkan bahwa zat volatil dalam batubara lebih sulit terdegradasi. Pirolisis lumpur pada 10, 15, dan 20°C/menit menghasilkan fraksi massa residu masing-masing 64,6% b/b, 62,4% b/b, dan 64,4% b/b. Penambahan batubara ke dalam lumpur mengurangi hasil arang. Penurunan hasil arang disebabkan oleh kandungan abu batubara yang lebih rendah dibandingkan dengan abu lumpur. Lumpur kehilangan sebagian besar massanya antara 200°C dan 500°C, dan mencapai puncaknya pada 280°C. Kehilangan massa melambat pada suhu >500°C. Rentang suhu yang lebar pada degradasi batubara menunjukkan bahwa batubara mengandung komponen yang memiliki suhu degradasi luas, seperti lignin. Berdasarkan kurva laju kehilangan massa, terdapat tiga puncak reaksi yang menunjukkan tiga mekanisme reaksi pirolisis lumpur-batubara. Semua puncak tersebut mengikuti mekanisme reaksi orde pertama. Puncak pertama kemungkinan terjadi karena dekomposisi hemiselulosa, dan komponen-komponen lain yang sangat mudah menguap. Puncak kedua dan ketiga masing-masing berhubungan dengan selulosa dan lignin. Sifat stabilitas termal yang tinggi menyebabkan degradasi lignin yang lambat, dan kehilangan massa terjadi dalam kisaran suhu yang sangat luas (160-900°C).



 

Keywords

Non-isothermal pyrolysis; pulp mill sludge; coal; activation energy

Full Text:

PDF

References

Biagini, E., Lippi, F., Petarca, L., & Tognotti, L. (2002). Devolatilization rate of biomasses and coal–biomass blends: an experimental investigation. Fuel, 81(8), 1041–1050. https://doi.org/10.1016/S0016-2361(01)00204-6

Chen, T., Li, L., Zhao, R., & Wu, J. (2017). Pyrolysis kinetic analysis of the three pseudocomponents of biomass–cellulose, hemicellulose and lignin. Journal of Thermal Analysis and Calorimetry, 128(3), 1825–1832. https://doi.org/10.1007/s10973-016-6040-3

Chen, X., Liu, L., Zhang, L., Zhao, Y., Zhang, Z., Xie, X., … Pei, J. (2018). Thermogravimetric analysis and kinetics of the co-pyrolysis of coal blends with corn stalks. Thermochimica Acta, 659, 59–65. https://doi.org/10.1016/J.TCA.2017.11.005

Coimbra, R. N., Paniagua, S., Escapa, C., Calvo, L. F., & Otero, M. (2015). Thermogravimetric analysis of the co-pyrolysis of a bituminous coal and pulp mill sludge. Journal of Thermal Analysis and Calorimetry, 122(3), 1385–1394. https://doi.org/10.1007/s10973-015-4834-3

Fang, S., Yu, Z., Lin, Y., Hu, S., Liao, Y., & Ma, X. (2015). Thermogravimetric analysis of the co-pyrolysis of paper sludge and municipal solid waste. Energy Conversion and Management, 101, 626–631. https://doi.org/10.1016/J.ENCONMAN.2015.06.026

Liu, G., Song, H., & Wu, J. (2015). Thermogravimetric study and kinetic analysis of dried industrial sludge pyrolysis. Waste Management, 41, 128–133. https://doi.org/10.1016/J.WASMAN.2015.03.042

Scott, G. M. (1995). Sludge characteristics and disposal alternatives for the pulp and paper industry. In Proceedings of the 1995 Environmental Conference (pp. 269–279). Atlanta, GA.: TAPPI PRESS.

Scott, S. A., Dennis, J. S., Davidson, J. F., & Hayhurst, A. N. (2006). Thermogravimetric measurements of the kinetics of pyrolysis of dried sewage sludge. Fuel, 85(9), 1248–1253. https://doi.org/10.1016/J.FUEL.2005.11.003

Stefanidis, S. D., Kalogiannis, K. G., Iliopoulou, E. F., Michailof, C. M., Pilavachi, P. A., & Lappas, A. A. (2014). A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. Journal of Analytical and Applied Pyrolysis, 105, 143–150. https://doi.org/10.1016/J.JAAP.2013.10.013

Thipkhunthod, P., Meeyoo, V., Rangsunvigit, P., & Rirksomboon, T. (2007). Describing sewage sludge pyrolysis kinetics by a combination of biomass fractions decomposition. Journal of Analytical and Applied Pyrolysis, 79(1–2), 78–85. https://doi.org/10.1016/J.JAAP.2006.10.005

Wang, X., Deng, S., Tan, H., Adeosun, A., Vujanović, M., Yang, F., & Duić, N. (2016). Synergetic effect of sewage sludge and biomass co-pyrolysis: A combined study in thermogravimetric analyzer and a fixed bed reactor. Energy Conversion and Management, 118, 399–405. https://doi.org/10.1016/J.ENCONMAN.2016.04.014

Werther, J., & Ogada, T. (1999). Sewage sludge combustion. Progress in Energy and Combustion Science, 25(1), 55–116. https://doi.org/10.1016/S0360-1285(98)00020-3

Xiao, P., Xu, L., Wang, X., & Chang, Z. (2015). Co-pyrolysis characteristics of coal and sludge blends using thermogravimetric analysis. Environmental Progress & Sustainable Energy, 34(6), 1780–1789. https://doi.org/10.1002/ep.12154

Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12–13), 1781–1788. https://doi.org/10.1016/J.FUEL.2006.12.013

Yang, X., & Jiang, Z. (2009). Kinetic studies of overlapping pyrolysis reactions in industrial waste activated sludge. Bioresource Technology, 100(14), 3663–3668. https://doi.org/10.1016/J.BIORTECH.2009.03.002

Zhou, H., Long, Y., Meng, A., Chen, S., Li, Q., & Zhang, Y. (2015). A novel method for kinetics analysis of pyrolysis of hemicellulose, cellulose, and lignin in TGA and macro-TGA. RSC Advances, 5(34), 26509–26516. https://doi.org/10.1039/C5RA02715B


Article Metrics


Abstract view : 0 times
PDF view : 0 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 JURNAL SELULOSA
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.