Pengaruh Komposisi Air Limbah Industri Kertas sebagai Media Pertumbuhan dan Fotoperiode Terhadap Kultur Spirulina platensis

Meisa Legi Rizkiana(1), Saepulloh Saepulloh(2*), Prima Besty Asthary(3), Rahmaniar Mulyani(4)
(1) Universitas Jenderal Achmadyani
(2) Center for Pulp and Paper, Ministry of Industry
(3) Balai Besar Pulp dan Kertas
(4) Universitas Jenderal Achmadyani
(*) Corresponding Author
DOI: http://dx.doi.org/10.25269/jsel.v9i01.268

Abstract

Industri kertas menghasilkan air limbah dari kegiatan produksi dan proses flue gas desulphurization (air limbah wet scrubber). Senyawa nutrisi (senyawa karbon, nitrogen, dan fosfat) yang masih terdapat dalam air limbah terolah dan air limbah wet scrubber belum dimanfaatkan secara optimal dan berpotensi sebagai media pertumbuhan Spirulina platensis. Penelitian dengan variasi komposisi air limbah dan fotoperiode (24 jam terang dan 12 jam terang/12 jam gelap) telah dilakukan dalam skala laboratorium selama 9 hari. Pengukuran pH media, pertumbuhan S. platensis (konsentrasi biomassa, laju pertumbuhan spesifik, dan waktu penggandaan), dan kandungan fikosianin dilakukan setiap hari untuk melihat pengaruh komposisi media dan perlakuan fotoperiode terhadap pertumbuhan S. platensis. Hasil menunjukkan bahwa S. platensis dapat tumbuh dengan baik pada semua komposisi air limbah terolah dan air limbah wet scrubber yang diujicobakan. Konsentrasi biomassa tertinggi sebesar 831 mg/L dan laju pertumbuhan spesifik tertinggi sebesar 0,52 hari-1 dengan waktu penggandaan 0,4 hari diperoleh dari perlakuan fotoperiode 24 jam terang. Komposisi air limbah terolah dan air limbah wet scrubber tidak memberikan pengaruh yang nyata terhadap konsentrasi biomassa, tetapi perbedaan fotoperiode sangat berpengaruh terhadap konsentrasi biomassa sehingga dalam aplikasi skala lapangan perlu mempertimbangkan sistem pencahayaan untuk pertumbuhan S. platensis yang optimal.

Kata kunci: Spirulina platensis, media pertumbuhan, fotoperiode, air limbah terolah, air limbah wet scrubber


The Effect of Composition of Paper Industry Wastewater as A Growth Medium and Photoperiod on The Culture of Spirulina platensis

Abstract

The paper industry produces wastewater from its production activities and the flue gas desulphurization process (wet scrubber wastewater). Nutritional compounds (carbon, nitrogen and phosphate compounds) which are still in treated wastewater and wet scrubber wastewater have not been utilized optimally and have potential as growth media of Spirulina platensis. Research on wastewater compositions and photoperiod variations (24 hours light and 12 hours light/12 hours dark) was carried out on a laboratory scale for 9 days. Measurements of medium pH, growth of S. platensis (biomass concentration, specific growth rate, and doubling time), and phycocyanin content were carried out every day to study the effect of wastewater composition and photoperiod treatment on the growth of S. platensis. The results showed that S. platensis can grow well on all compositions of treated wastewater and wet scrubber wastewater. The highest biomass concentration of 831 mg/L and the highest specific growth rate of 0.52 days-1 with a doubling time of 0,4 days is obtained from 24-hour light photoperiod treatment. The composition of treated wastewater and wet scrubber wastewater has no significant effect on the biomass concentration but the photoperiod differences greatly influence the biomass concentration so that in the field scale application it is necessary to consider the lighting system for optimal S. platensis growth.

 

Keywords:  Spirulina platensis, growth medium, photoperiod, treated wastewater, wet scrubber wastewater

Keywords

Spirulina platensis; growth medium; photoperiod; treated wastewater; wet scrubber wastewater

Full Text:

PDF

References

Ajayan, K. V., Selvaraju, M. and Thirugnanamoorthy, K. (2012) ‘Enrichment of chlorophyll and phycobiliproteins in Spirulina platensis by the use of reflector light and nitrogen sources: An in-vitro study’, Biomass and Bioenergy, 47, pp. 436–441. doi: 10.1016/j.biombioe.2012.09.012.

Allen, M. M. and Smith, A. J. (1969) ‘Nitrogen chlorosis in blue-green algae’, Arch. Mikrobiol., 69(2), pp. 114–120. doi: 10.1007/BF00409755.

Amanatin, D. R. and Nurhidayati, T. (2013) ‘Pengaruh Kombinasi Konsentrasi Media Ekstrak Tauge (MET) dengan Pupuk Urea terhadap Kadar Protein Spirulina sp’, Jurnal Sains dan Seni ITS, 2(2), pp. E182–E1885. doi: 10.12962/j23373520.v2i2.4054.

Asthary, P. B. et al. (2013) ‘Pertumbuhan Mikroalga Spirulina platensis dalam Efluen Industri Kertas’, Jurnal Selulosa, 3(2), pp. 97–102.

Bennet, A. and Bogorad, L. (1973) ‘Complementary Cromatic Adaptation in A Filamentous Blue-Green Alga’, The Journal of Cell Biology, 58, pp. 419–435. doi: 10.1016/S0022-3468(89)80710-9.

Bermejo, P., Piñero, E. and Villar, Á. M. (2008) ‘Iron-chelating ability and antioxidant properties of phycocyanin isolated from a protean extract of Spirulina platensis’, Food Chemistry, 110(2), pp. 436–445. doi: 10.1016/j.foodchem.2008.02.021.

Bertolin, T. E. et al. (2011) ‘Antioxidant Effect of Phycocyanin on Oxidative Stress Induced with Monosodium Glutamate in Rats’, Brazilian Archives of Biology and Technology, 54(4), pp. 733–738. doi: 10.1590/s1516-89132011000400012.

Bezerra, R. P. et al. (2012) ‘Effects of photobioreactor configuration, nitrogen source and light intensity on the fed-batch cultivation of Arthrospira (Spirulina) platensis. Bioenergetic aspects’, Biomass and Bioenergy, 37, pp. 309–317. doi: 10.1016/j.biombioe.2011.11.007.

Blinkova, L. P., Gorobets, O. B. and Baturo, A. P. (2001) ‘Biological activity of Spirulina’, Zhurnal mikrobiologii, epidemiologii, i immunobiologii, (2), pp. 114–118.

Boussiba, S. and Richmond, A. E. (1980) ‘C-phycocyanin as a storage protein in the blue-green alga Spirulina platensis’, Archives of Microbiology, 125(1–2), pp. 143–147. doi: 10.1007/BF00403211.

Braga, V. da S. et al. (2018) ‘Cultivation strategy to stimulate high carbohydrate content in Spirulina biomass’, Bioresource Technology, 269(August), pp. 221–226. doi: 10.1016/j.biortech.2018.08.105.

Braga, V. da S. et al. (2019) ‘Enhancement of the carbohydrate content in Spirulina by applying CO2, thermoelectric fly ashes and reduced nitrogen supply’, International Journal of Biological Macromolecules, 123, pp. 1241–1247. doi: 10.1016/j.ijbiomac.2018.12.037.

Budiardi, T., Utomo, N. B. P. and Santosa, A. (2010) ‘Pertumbuhan dan kandungan nutrisi Spirulina sp . pada fotoperiode yang berbeda’, Jurnal Akuakultur Indonesia, 9(2), pp. 146–156.

Cai, T., Park, S. Y. and Li, Y. (2013) ‘Nutrient recovery from wastewater streams by microalgae: Status and prospects’, Renewable and Sustainable Energy Reviews, 19, pp. 360–369. doi: 10.1016/j.rser.2012.11.030.

Çelekli, A., Yavuzatmaca, M. and Bozkurt, H. (2009) ‘Modeling of biomass production by Spirulina platensis as function of phosphate concentrations and pH regimes’, Bioresource Technology, 100(14), pp. 3625–3629. doi: 10.1016/j.biortech.2009.02.055.

Chang, Y. et al. (2013) ‘Cultivation of Spirulina platensis for biomass production and nutrient removal from synthetic human urine’, Applied Energy, 102, pp. 427–431. doi: 10.1016/j.apenergy.2012.07.024.

Chen, C. Y. et al. (2013) ‘Engineering strategies for simultaneous enhancement of C-phycocyanin production and CO2fixation with Spirulina platensis’, Bioresource Technology, 145, pp. 307–312. doi: 10.1016/j.biortech.2013.01.054.

Colla, L. M. et al. (2015) ‘Potential of Live Spirulina platensis on Biosorption of Hexavalent Chromium and Its Conversion to Trivalent Chromium’, International Journal of Phytoremediation, 17(9), pp. 861–868. doi: 10.1080/15226514.2014.964846.

Demirbas, M. F. (2011) ‘Biofuels from algae for sustainable development’, Applied Energy. Elsevier Ltd, 88(10), pp. 3473–3480. doi: 10.1016/j.apenergy.2011.01.059.

Dianursanti and Wijanarko, A. (2007) ‘Enhancement Of Cyanobacteria Growth In Serial Configuration Photobioreactor By Photon Flux Density Alteration’, Jurnal Teknologi, (4), pp. 299–308.

Doble, M. and Kumar, A. (2005) ‘CHAPTER 19 - Paper and Pulp’, in Doble, M. and Kumar, A. (eds) Biotreatment of Industrial Effluents. Burlington: Butterworth-Heinemann, pp. 197–207. doi: https://doi.org/10.1016/B978-075067838-4/50020-8.

Endrawati, H., Manulang, C. and Widianingsih (2012) ‘Densitas dan Kadar Total Lipid Mikroalga Spirulina platensis yang Dikultur pada Fotoperioda yang Berbeda’, Buletin Oseanografi Marina, 1, pp. 33–38.

Eriksen, N. T. (2008) ‘Production of phycocyanin - A pigment with applications in biology, biotechnology, foods and medicine’, Applied Microbiology and Biotechnology, 80(1), pp. 1–14. doi: 10.1007/s00253-008-1542-y.

Gude, V. G. (2015) ‘Energy and water autarky of wastewater treatment and power generation systems’, Renewable and Sustainable Energy Reviews. Elsevier, 45, pp. 52–68. doi: 10.1016/j.rser.2015.01.055.

Gude, V. G. (2016) ‘Wastewater treatment in microbial fuel cells - An overview’, Journal of Cleaner Production, 122, pp. 287–307. doi: 10.1016/j.jclepro.2016.02.022.

Gude, V. G., Kokabian, B. and Gadhamshetty, V. (2013) ‘Beneficial Bioelectrochemical Systems for Energy, Water, and Biomass Production’, Journal of Microbial & Biochemical Technology, S6(5). doi: 10.4172/1948-5948.s6-005.

Hariyati, R. (2008) ‘Pertumbuhan dan Biomassa Spirulina sp dalam Skala Laboratoris’, Bioma, 10(1), pp. 19–22.

Jo, E. et al. (2015) ‘A study on the removal of sulfate and nitrate from the wet scrubber wastewater using electrocoagulation’, Desalination and Water Treatment, 57(17), pp. 7833–7840. doi: 10.1080/19443994.2015.1028461.

Kebede, E. (1997) ‘Response of Spirulina platensis (=Arthrospira fusiformis) from Lake Chitu, Ethiopia, to salinity stress from sodium salts’, Journal of Applied Phycology, 9(6), pp. 551–558. doi: 10.1023/A:1007949021786.

Khairunnissa, I. N. et al. (2018) ‘Pemanfaatan Air Limbah Wet Scrubber Flue Gas Desulphurization (FGD) Industri Kertas sebagai Medium Pertumbuhan Spirulina platensis’, Jurnal Selulosa, 8(2), pp. 94–104.

Kim, K. et al. (2013) ‘Impact of light intensity, CO2 concentration and bubble size on growth and fatty acid composition of Arthrospira (Spirulina) platensis KMMCC CY-007’, Biomass and Bioenergy, 49, pp. 181–187. doi: 10.1016/j.biombioe.2012.12.021.

Kokabian, B. and Gude, V. G. (2015) ‘Sustainable photosynthetic biocathode in microbial desalination cells’, Chemical Engineering Journal. Elsevier B.V., 262, pp. 958–965. doi: 10.1016/j.cej.2014.10.048.

Kuddus, M. et al. (2013) ‘Recent developments in production and biotechnological applications of c-phycocyanin’, BioMed Research International, 2013, pp. 1–9. doi: 10.1155/2013/742859.

Leduy, A. and Therien, N. (1977) ‘An improved method for optical density measurement of the semimicroscopic blue green alga Spirulina maxima’, Biotechnology and Bioengineering, 19(8), pp. 1219–1224. doi: 10.1002/bit.260190812.

Liu, Y. et al. (2018) ‘Quantifying biodegradable organic matter in polluted water on the basis of coulombic yield’, Talanta, 176, pp. 485–491. doi: 10.1016/j.talanta.2017.08.029.

Manullang, C., Widianingsih and Endrawati, H. (2012) ‘Densitas dan Kandungan Total Lipid Mikroalga Spirulina platensis’, Journal of Marine Research, 1(1), pp. 24–28. Available at: http://ejournal-s1.undip.ac.id/index.php/jmr.

Meseck, S. L., Alix, J. H. and Wikfors, G. H. (2005) ‘Photoperiod and light intensity effects on growth and utilization of nutrients by the aquaculture feed microalga, Tetraselmis chui (PLY429)’, Aquaculture, 246(1–4), pp. 393–404. doi: 10.1016/j.aquaculture.2005.02.034.

Ono, E. and Cuello, J. L. (2004) ‘Design parameters of solar concentrating systems for CO2-mitigating algal photobioreactors’, Energy, 29(9), pp. 1651–1657.

Rajak, U. and Verma, T. N. (2018) ‘Spirulina microalgae biodiesel – A novel renewable alternative energy source for compression ignition engine’, Journal of Cleaner Production, 201(X), pp. 343–357. doi: 10.1016/j.jclepro.2018.08.057.

Rodrigues, M. S. et al. (2010) ‘Fed-batch cultivation of Arthrospira (Spirulina) platensis: Potassium nitrate and ammonium chloride as simultaneous nitrogen sources’, Bioresource Technology, 101(12), pp. 4491–4498. doi: 10.1016/j.biortech.2010.01.054.

Romay, C. et al. (1998) ‘Antioxidant and anti-inflammatory properties of C-phycocyanin from blue-green algae’, Inflammation Research, 47(1), pp. 36–41. doi: 10.1007/s000110050256.

Schenk, P. M. et al. (2008) ‘Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production’, BioEnergy Research, 1(1), pp. 20–43. doi: 10.1007/s12155-008-9008-8.

Setiawan, Y. et al. (2014) ‘Pemanfaatan Emisi Gas CO2 untuk Budidaya Spirulina platensis dalam Upaya Penurunan Gas Rumah Kaca (GRK)’, Jurnal Riset Industri, 8(2), pp. 83–89.

Soni, R. A., Sudhakar, K. and Rana, R. S. (2017) ‘Spirulina – From growth to nutritional product: A review’, Trends in Food Science and Technology, 69, pp. 157–171. doi: 10.1016/j.tifs.2017.09.010.

Soong, P. (1980) ‘Production and development of Chlorella and Spirulina in Taiwan.’, in Shelef, G. and Soeder, C.J., pp. 97–113.

Sumprasit, N. et al. (2017) ‘Biodiesel and biogas recovery from Spirulina platensis’, International Biodeterioration and Biodegradation, 119, pp. 196–204. doi: 10.1016/j.ibiod.2016.11.006.

Thompson, G. et al. (2001) ‘The treatment of pulp and paper mill effluent: A review’, Bioresource Technology, 77(3), pp. 275–286. doi: 10.1016/S0960-8524(00)00060-2.

Utomo, N. B. P. et al. (2005) ‘Pertumbuhan Spirulina platensis yang Dikultur dengan Pupuk Inorganik (Urea, TSP dan ZA) dan Kotoran Ayam’, Akuakultur Indonesia, 4(1), pp. 41–48.

Vieira Costa, J. A., Colla, L. M. and Duarte Filho, P. F. (2004) ‘Improving Spirulina platensis biomass yield using a fed-batch process’, Bioresource Technology, 92(3), pp. 237–241. doi: 10.1016/j.biortech.2003.09.013.

Vonshak, A. (1997) Spirulina platensis (Arthrospira): Physiology, Cell-biology and Biotechnology. Vonshak,. Edited by A. Vonshak. London: Taylor & Francis.

Yuan, X. et al. (2011) ‘Impact of ammonia concentration on Spirulina platensis growth in an airlift photobioreactor’, Bioresource Technology, 102(3), pp. 3234–3239. doi: 10.1016/j.biortech.2010.11.019.


Article Metrics


Abstract view : 7 times
PDF view : 7 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 JURNAL SELULOSA
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.