Pemanfaatan Air Limbah Wet Scrubber Flue Gas Desulphurization (FGD) Industri Kertas sebagai Medium Pertumbuhan Spirulina platensis

Isni Nur Khairunnissa(1*), Prima Besty Asthary(2), Saepulloh Saepulloh(3), Rahmaniar Mulyani(4)
(1) Jenderal Achmad Yani University
(2) Center for Pulp and Paper, Ministry of Industry
(3) Center for Pulp and Paper, Ministry of Industry
(4) Jenderal Achmad Yani University
(*) Corresponding Author
DOI: http://dx.doi.org/10.25269/jsel.v8i02.239

Abstract

Proses flue gas desulohurization (FGD) dengan wet scrubber adalah suatu proses untuk menurunkan konsentrasi SOx gas buang hasil pembakaran. Proses inidapat mengatasi polusi udara dengan cara menurunkan emisi gas dan partikel debu sehingga menghasilkan gas buangan yang lebih bersih. Air limbah wet scrubber bersifat asam. Salah satu alternatif pemanfaatan air limbah wet scrubber adalah untuk budidaya mikroalga. Spirulina platensis merupakan mikroalga yang berwarna hijau kebiruan yang mempunyai nilai gizi tinggi. Penelitian ini bertujuan untuk mengetahui potensi air limbah wet scrubber sebagai medium pertumbuhan S. platensis dan untuk mengetahui konsentrasi air limbah yang optimum bagi pertumbuhan S. platensis. Metode yang digunakan adalah Rancangan Acak Lengkap (RAL) dengan 5 perlakuan dan 5 ulangan. Air limbah wet srubber dengan konsentrasi 0%, 25%, 50%, 75%, dan 100% digunakan sebagai medium pertumbuhan S. platensis. Selama kultivasi, dilakukan pengamatan pH, produksi biomassa, dan kandungan fikosianin. Hasil menunjukkan bahwa air limbah wet scrubber dapat dimanfaatkan sebagai medium pertumbuhan S. platensis. Konsentrasi optimum bagi pertumbuhan S. platensis adalah campuran dari 75% air limbah  wet scrubber dan 25% medium Zarrouk.

Kata kunci : air limbah, flue gas desulphurization, wet scrubber, Spirulina platensis

 

Utilization of Wet Scrubber Wastewater from Flue Gas Desuphurization (FGD) of Paper Industry as a Growth Medium for Spirulina platensis

Abstract

The flue gas desulohurization (FGD) withwet scrubber is a process to reduce the concentration of SOx of the flue gas from combustion. This process can resolve the air pollution by reducing gas emission and the dust particles in the liquid droplets to produce cleaner flue gas. The wet scrubber wastewater is acidic. An alternative utilization of wet scrubber wastewater is for cultivation of microalgae. Spirulina platensis is bluish-green microalgae containing high nutritional value. The objective of this research is to determine the potential and the optimum concentration of wastewater from wet scrubber as growth medium of Spirulina. platensis. The research method was observation in the laboratory with a completely randomized design (CRD) with 5 treatments and 5 repetitions. The wastewater from wet scrubber with a concentration of 0 %, 25 %, 50 %, 75 %, and 100 % was used as growth medium of S. platensis. During cultivation, pH, biomass production, and pigment phycocyanin were measured. The results indicated that the wastewater of wet scrubber can be utilized as a growth medium of S. platensis. The optimum concentration for the growth of S. platensis is the mixture of 75% of the wastewater from wet scrubber and 25% of medium Zarrouk.

Keywords : wastewater, flue gas desulphurization, wet scrubber, Spirulina platensis

Keywords

wastewater, flue gas desulphurization, wet scrubber, Spirulina platensis

Full Text:

PDF

References

Ajayan, K. V, Selvaraju, M., & Thirugnanamoorthy, K. (2012). Enrichment of chlorophyll and phycobiliproteins in Spirulina platensis by the use of reflector light and nitrogen sources : An in-vitro study. Biomass and Bioenergy, 47, 436–441. https://doi.org/10.1016/j.biombioe.2012.09.012

Asthary, P. B., Setiawan, Y., Surachman, A., & Perindustrian, K. (2013). Pertumbuhan Mikroalga Spirulina platensis dalam Efluen Industri Kertas. Jurnal Selulosa, 3(2), 97–102.

Borowitzka, Michael, A., & Lesly, B. J. (1988). Micro-algal Biotechnology. Cambridge University Press.

Boussiba, S., & Richmond, A. E. (1980). C-Phycocyanin as a Storage Protein in the Blue-Green Alga Spirulina platensis Samy. Archives of Microbiology, 147, 143–147.

Budiyono, A. (2001). Pencemaran Udara : Dampak Pencemaran Udara Pada Lingkungan. Dirgantara, 2(1), 21–27. https://doi.org/10.1038/srep02598

Chang, Y., Wu, Z., Bian, L., Feng, D., & Leung, D. Y. C. (2013). Cultivation of Spirulina platensis for biomass production and nutrient removal from synthetic human urine. Applied Energy, 102, 427–431. https://doi.org/10.1016/j.apenergy.2012.07.024

Eriksen, N. T. (2008). Production of phycocyanin — a pigment with applications in biology , biotechnology , foods and medicine. Microbiol Bioetechnol, 80(1), 1–14. https://doi.org/10.1007/s00253-008-1542-y

Erni, & Yatim, M. (2007). Dampak dan Pengendalian Hujan Asam. Jurnal Kesehatan Masyarakat, II(1), 146–151.

Feng, D., Wu, Z., & Wang, D. (2007). Effects of N source and nitrification pretreatment on growth of Arthrospira platensis in human urine. Journal of Zhejiang University-SCIENCE A, 8(11), 1846–1852. https://doi.org/10.1631/jzus.2007.A1846

Fogg, G. . (1975). Algal cultures and phytoplankton ecology. University of Wisconsin Press.

Habib, B., Parvin, M., Huntington, T. C., & Hasan, M. R. (2008). A Review on Culture, Production, and Use of Spirulina platensis as Food for Humans and Feeds for Domestic Animal and Fish. FAO Fisheries and Aquaculture Circular No. 1034.

Hadiyanto, & Azim, M. (2012). Mikroalga Sumber Pangan & Energi Masa Depan. Semarang: UPT UNDIP Press.

Kumar, K., Dasgupta, C. N., Nayak, B., Lindblad, P., & Das, D. (2011). Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresource Technology, 102(8), 4945–4953. https://doi.org/10.1016/j.biortech.2011.01.054

Kusnoputranto, H. (1985). Kesehatan Lingkungan. Jakarta: Universitas Indonesia.

Lavens, P., & Sorgeloos, P. (1996). Manual on the production and use of live food for aquaculture.

Mahmoud, R., Ibrahim, M., & Ali, G. (2016). Closed photobioreactor for microalgae biomass production under indoor growth conditions, 7(1), 86–92.

Matsumoto, H., Hamasaki, A., Sioji, N., & Ikuta, Y. (1997). Influence of CO2, SO2, and NO in Flue Gas on Microalgae Productivity. Journal of Chemical Engineering of Japan, 30(4), 620–624.

Mayasari, F. (2013). Analisis Perhitungan Eksternalitas pada PLTU Muara Karang dengan Penggunaan Flue Gas Desulphurization. Jurnal Ristek, 2(1), 38–42.

Promya, J., Traichaiyaporn, S., & Deming, R. (2008). Phytoremediation of kitchen wastewater by Spirulina platensis (Nordstedt) Geiteler: pigment content, production variable cost and nutritional value. Journal of Science and Technology and Nutritional Value, 2(3), 159–171.

Setiawan, Y., Surachman, A., Asthary, P. B., & Saepulloh, S. (2014). Pemanfaatan emisi gas CO2 untuk budidaya Spirulina platensis dalam upaya penurunan Gas Rumah Kaca (GRK). Journal of Industrial Research (Jurnal Riset Industri), 8(2).

Setyaningsih, I., & Saputra, A. T. (2011). Chemical Composition and Pigment Content of Spirulina fusiformis on the Different Harvesting Age in Fertilized Media. Jurnal Pengolahan Hasil Perikanan Indonesia, XIV(1), 63–69.

Soni, A. F. N. (2010). Budidaya Masal Spirulina platensis di Perairan Laut Jepara. Prosising Simposium Nasional Bioteknologi, Bogor: Dep.

Suantika, G., & Hendrawandi. (2009). Efektivitas Teknik Kultur menggunakan Sistem Kultur Statis, Semi-kontinyu, dan Kontinyu terhadap Produktivitas dan Kualitas Kultur Spirulina sp. Matematika Dan Sains, 14(2), 41–50.

Sumiarsa, D., Jatnika, R., Kurnani, T. B. A., & Lewaro, M. W. (2011). Perbaikan Kualitas Limbah Cair Peternakan Sapi perah. Akuatika, II(September), 93.

Suminto. (2009). Penggunaan Jenis Media Kultur Teknis terhadap Produksi dan Kandungan Nutrisi Sel Spirulina platensis. Jurnal Saintek Perikanan, 4(2), 53–61.

Sunardi, A. F., Ir, D., Dhofir, M., Soemarwanto, I., Elektro, T., Elektro, T., … Udara, A. P. P. (2013). Perancangan dan Pembuatan Model Miniatur. Jurnal Mahasiswa TEUB, 1(1), 1–6.

Uday Bhaskar, S., Gopalaswamy, G., & Raghu, R. (2005). A simple method for efficient extraction and purification of C-phycocyanin from Spirulina platensis Geitler. Indian Journal of Experimental Biology, 43(3), 277–279. https://doi.org/10.1023/A:1008914405302

Zakaria, T. (2018). Penerapan Flue Gas Dual Treatment pada Emisi Gas Buang Ketel Uap Bubling Fluideized Bed Boiler di PT. DDD. InTent, 1(1), 13–23.


Article Metrics


Abstract view : 521 times
PDF view : 231 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 JURNAL SELULOSA
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.