Oxidation of Cellulose from Oil Palm Empty Fruit Bunch Using Hydrogen Peroxide in Alkaline Condition

Isroi Isroi(1*), Adi Cifriadi(2)
(1) Indonesian Research Institute for Biotechnology and Bioindustry
(2) Indonesian Rubber Research Institute
(*) Corresponding Author
DOI: http://dx.doi.org/10.25269/jsel.v8i02.233


There are growing interest to use cellulose as renewable material in order to replace non-renewable polymeric materials. Alteration and chemical modifications of the cellulose by oxidation is needed to improve its properties and functionality. The aim of this study was to evaluate oxidation effect of the cellulose from oil palm empty fruit bunch (OPEFB) using hydrogen peroxide in alkaline condition. Cellulose has been isolated and purified by sodium hydroxide method followed by sodium hypochlorite bleaching. The oxidation effect of the cellulose by hydrogen peroxide was investigated by component analysis of the lignocelluloses, visual analysis, physical and chemical properties. Fourier transform infrared spectroscopy was employed to evaluate the changes of functional groups. Digesting of the OPEFB by sodium hydroxide at temperature 160oC for 4 hours reduced lignin content from 22.58% to 16.60%, increase cellulose and hemicelluloses content from 60.76% to 73.87% and 25.86% to 30.95%, respectively. Treatment of the OPEFB pulp using sodium hypochlorite removed all residual lignin. Cellulose content was increased up to 90.86%. Degree of polymerization of the oxidized cellulose was reduced from 1997 to 658. Carboxyl groups of celluloses was significantly increased and confirmed by titration analysis. OPEFB cellulose fiber was damage and broken, meanwhile crystallinity of the cellulose was reduced.

Keywords: cellulose, oxidation, oil palm empty fruit bunch, carboxyl group, crystallinity, physical properties


Oksidasi Selulosa dari Tandan Kosong Kelapa Sawit menggunakan Hidrogen Peroksida dalam Kondisi Basa


Perhatian untuk memanfaatkan selulosa sebagai polimer terbarukan untuk menggantikan polimer tidak terbarukan mengalami peningkatan. Perubahan dan modifikasi kimia selulosa melalui proses oksidasi diperlukan untuk meningkatkan sifat dan fungsi selulosa. Penelitian ini bertujuan untuk mempelajari pengaruh oksidasi selulosa dari tandan kosong kelapa sawit (TKKS) menggunakan hidrogen peroksida dalam suasana basa. Selulosa diisolasi dan dimurnikan dengan metode natrium hidroksida dan dilanjutkan dengan pemutihan natrium hipoklorit. Efek oksidasi selulosa oleh hidrogen peroksida dievaluasi menggunakan analisis komponen lignoselulosa, analisis visual, sifat fisik dan kimia. Analisis spektroskopi inframerah (FTIR) digunakan untuk mengevaluasi perubahan gugus fungsional selulosa. Pemasakan TKKS dengan natrium hidroksida pada suhu160oC selama 4 jam mengurangi kandungan lignin dari 22,58% menjadi 16,60%, meningkatkan kandungan selulosa dari 60,76% menjadi 73,87% dan hemiselulosa dari 25,86% menjadi 30,95%. Perlakuan pulp TKKS menggunakan natrium hipoklorit menghilangkan semua sisa lignin. Kandungan selulosa meningkat hingga 90,86%. Oksidasi selulosa dengan hidrogen peroksida menurunkan derajat polimerisasi selulosa dari 1997 menjadi 658. Gugus karboksil selulosa meningkat secara signifikan dan dikonfirmasi dengan analisis titrasi. Analisis visual menunjukkan kerusakan serabut selulosa, sesuai dengan pengurangan kristalinitas selulosa.

Kata kunci: selulosa, oksidasi, tandan kosong kelapa sawit, gugus karboksil, kristalinitas, sifat fisik



cellulose; oxidation; oil palm empty fruit bunch; carboxyl group; alkaline condition; hydrogen peroxide

Full Text:



Abdul, P.M., Jahim, J.M., et al., 2016. Effects of changes in chemical and structural characteristic of ammonia fibre expansion (AFEX) pretreated oil palm empty fruit bunch fibre on enzymatic saccharification and fermentability for biohydrogen. Bioresource Technology, 211, pp.200–208. Available at: http://www.sciencedirect.com/science/article/pii/S0960852416302814.

Abdul, P.M., Jahim, J., et al., 2016. Effects of changes in chemical and structural characteristic of ammonia fibre expansion (AFEX) pretreated oil palm empty fruit bunch fibre on enzymatic saccharification and fermentability for biohydrogen. Bioresource Technology, 211, pp.200–208. Available at: http://dx.doi.org/10.1016/j.biortech.2016.02.135.

Åkerholm, M., Hinterstoisser, B. & Salmén, L., 2004. Characterization of the crystalline structure of cellulose using static and dynamic FT-IR spectroscopy. Carbohydrate research, 339(3), pp.569–578.

Alavudeen, A. et al., 2015. Mechanical properties of banana/kenaf fiber-reinforced hybrid polyester composites: Effect of woven fabric and random orientation. Materials & Design (1980-2015), 66, pp.246–257.

de Assis Castro, R.C. et al., 2017. Alkaline deacetylation as a strategy to improve sugars recovery and ethanol production from rice straw hemicellulose and cellulose. Industrial Crops and Products, 106, pp.65–73.

Bari, N. et al., 2010. Statistical optimization of process parameters for the production of citric acid from oil palm empty fruit bunches. African Journal of Biotechnology, 9(4), pp.554–563. Available at: http://www.scopus.com/inward/record.url?eid=2-s2.0-76649110596&partnerID=40&md5=1f8df396c046af1d021e8c3cdd803663.

Brooks, R. & Moore, S., 2000. Alkaline hydrogen peroxide bleaching of cellulose. Cellulose, 7(3), pp.263–286. Available at: http://dx.doi.org/10.1023/A%3A1009273701191.

Chadijah, S., Rustiah, W.O. & Munir, M.I.D., 2018. Determination of the optimum concentration cellulose baggase in making film bioplastic. In Journal of Physics: Conference Series. p. 12026.

Chesson, A., 1981. Effects of sodium hydroxide on cereal straws in relation to the enhanced degradation of structural polysaccharides by rumen microorganisms. Journal of the Science of Food and Agriculture, 32(8), pp.745–758.

Coseri, S. et al., 2013. Oxidized cellulose - Survey of the most recent achievements. Carbohydrate Polymers, 93(1), pp.207–215. Available at: http://dx.doi.org/10.1016/j.carbpol.2012.03.086.

Dirjenbun, 2015. Statistik Perkebunan Indonesia: Kelapa sawit 2014-2015, Available at: http://ditjenbun.pertanian.go.id/tinymcpuk/gambar/file/statistik/2016/SAWIT 2014-2016.pdf.

Fahma, F. et al., 2010. Isolation, preparation, and characterization of nanofibers from oil palm empty-fruit-bunch (OPEFB). Cellulose, 17(5), pp.977–985. Available at: http://www.scopus.com/inward/record.url?eid=2-s2.0-77955368294&partnerID=40&md5=1938a6d741151645c0629f4587cc16db.

Faix, O. et al., 1991. Monitoring of chemical changes in white-rot degraded beech wood by pyrolysis—Gas chromatography and Fourier-transform infrared spectroscopy. Journal of Analytical and Applied Pyrolysis, 21(1), pp.147–162.

Fras, L. & Stana-Kleinschek, K., 2002. Quantitative determination of carboxyl groups in cellulose by complexometric titration. Lenzinger …, pp.80–88. Available at: http://www.lenzing.com/fileadmin/template/pdf/konzern/lenzinger_berichte/ausgabe_81_2002/LB_2002_Fras_16_ev.pdf.

Hamzah, F., Idris, A. & Shuan, T.K., 2011. Preliminary study on enzymatic hydrolysis of treated oil palm (Elaeis) empty fruit bunches fibre (EFB) by using combination of cellulase and $β$ 1-4 glucosidase. biomass and bioenergy, 35(3), pp.1055–1059. Available at: http://dx.doi.org/10.1016/j.biombioe.2010.11.020.

Haque, M.M. et al., 2009. Physico-mechanical properties of chemically treated palm and coir fiber reinforced polypropylene composites. Bioresource Technology, 100(20), pp.4903–4906.

Hubbell, C.A. & Ragauskas, A.J., 2010. Effect of acid-chlorite delignification on cellulose degree of polymerization. Bioresource Technology, 101(19), pp.7410–7415. Available at: http://dx.doi.org/10.1016/j.biortech.2010.04.029.

Hurtubise, F.G. & Krässig, H., 1960. Classification of fine structural characteristics in cellulose by infared spectroscopy. Use of potassium bromide pellet technique. Analytical Chemistry, 32(2), pp.177–181.

Isroi, 2015. Biological Pretreatment of Oil Palm Empty Fruit Bunches. In 2nd International Symposium on Integrated Biorefinary (ISIBio). Bogor, pp. 1–12.

Isroi, Mofoluwake, I. & Taherzadeh, M.J., 2014. Effect of fungal and phosphoric acid pretreatment on ethanol production from oil palm empty fruit bunches (OPEFB). Bioresource Technology.

Jonoobi, M. et al., 2009. Chemical composition, crystallinity, and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibers. BioResources, 4(2), pp.626–639.

Khalid, M. et al., 2008. Comparative study of polypropylene composites reinforced with oil palm empty fruit bunch fiber and oil palm derived cellulose. Materials & Design, 29(1), pp.173–178.

Khalil, H.P.S.A. et al., 2008. Chemical composition, morphological characteristics, and cell wall structure of Malaysian oil palm fibers. Polymer - Plastics Technology and Engineering, 47(3), pp.273–280.

Khalil, H.P.S.A., Bhat, A.H. & Yusra, A.F.I., 2012. Green composites from sustainable cellulose nanofibrils: A review. Carbohydrate Polymers, 87(2), pp.963–979.

Kitaoka, T., Isogai, A. & Onabe, F., 1999. Chemical modification of pulp fibers by TEMPO-mediated oxidation. Nordic Pulp and Paper Research Journal, 14(4), pp.279–284.

Kramar, A.N.A. et al., 2014. Cellulose chemistry and technology influence of structural changes induced by oxidation and addition of silver ions on electrical properties of cotton yarn. , 48, pp.189–197.

Lani, N.S. et al., 2014. Isolation, characterization, and application of nanocellulose from oil palm empty fruit bunch fiber as nanocomposites. Journal of Nanomaterials, 2014, p.13.

Law, K.-N., Daud, W.R.W. & Ghazali, A., 2007. Morphological and chemical nature of fiber strands of oil palm empty-fruit-bunch (OPEFB). BioResources, 2(3), pp.351–362.

Łojewska, J. et al., 2005. Cellulose oxidative and hydrolytic degradation: In situ FTIR approach. Polymer Degradation and Stability, 88(3), pp.512–520.

Ma, P. et al., 2010. Influence of oxidation and cationization on the properties of thermomechanical pulp fibers. Tappi Journal, 9(10), pp.36–43.

Mohd, N.H. et al., 2017. Properties of Aminosilane Modified Nanocrytalline Cellulose (NCC) from Oil Palm Empty Fruit Bunch (OPEFB) Fibers. Materials Science Forum, 888(March), pp.284–289. Available at: http://www.scientific.net/MSF.888.284.

Mosier, N. et al., 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource technology, 96(6), pp.673–686.

Norul Izani, M.A. et al., 2013. Effects of fiber treatment on morphology, tensile and thermogravimetric analysis of oil palm empty fruit bunches fibers. Composites Part B: Engineering, 45(1), pp.1251–1257.

Park, S. et al., 2010. Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnology for Biofuels, 3(1), p.10. Available at: http://www.biotechnologyforbiofuels.com/content/3/1/10.

Piarpuzán, D., Quintero, J.A. & Cardona, C.A., 2011. Empty fruit bunches from oil palm as a potential raw material for fuel ethanol production. Biomass and Bioenergy, 35(3), pp.1130–1137.

Pujiasih, S. et al., 2018. Silylation and characterization of microcrystalline cellulose isolated from indonesian native oil palm empty fruit bunch. Carbohydrate Polymers, 184, pp.74–81. Available at: http://dx.doi.org/10.1016/j.carbpol.2017.12.060.

Rahman, S.H.A. et al., 2007. Optimization studies on acid hydrolysis of oil palm empty fruit bunch fiber for production of xylose. Bioresource Technology, 98(3), pp.554–559. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16647852.

Schwanninger, M. et al., 2004. Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vibrational Spectroscopy, 36(1), pp.23–40.

Shen, L., Worrell, E. & Patel, M., 2010. Present and future development in plastics from biomass. Biofuels, Bioproducts and Biorefining, 4(1), pp.25–40.

Shinoj, S. et al., 2011. Oil palm fiber (OPF) and its composites: A review. Industrial Crops and Products, 33(1), pp.7–22. Available at: http://dx.doi.org/10.1016/j.indcrop.2010.09.009.

Sklavounos, E. et al., 2013. Oil palm empty fruit bunch to biofuels and chemicals via SO2-ethanol-water fractionation and ABE fermentation. Bioresour Technol, 147, pp.102–109. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23994956.

Spiridon, I., Teaca, C.A. & Bod^irluau, R., 2011. Structural changes evidenced by FTIR spectroscopy in cellulose materials after pre-treatment with ionic liquid and enzymatic hydrolysis. BioResources, 6(1), pp.400–413.

Sreekala, M.S., Kumaran, M.G. & Thomas, S., 1997. Oil palm fibers: Morphology, chemical composition, surface modification, and mechanical properties. Journal of Applied Polymer Science, 66(5), pp.821–835. Available at: http://dx.doi.org/10.1002/(SICI)1097-4628(19971031)66:5%3C821::AID-APP2%3E3.0.CO;2-X.

Stenstad, P. et al., 2008. Chemical surface modifications of microfibrillated cellulose. Cellulose, 15(1), pp.35–45.

Suhas, Carrott, P.J.M. & Ribeiro Carrott, M.M.L., 2007. Lignin - from natural adsorbent to activated carbon: A review. Bioresource Technology, 98(12), pp.2301–2312.

Swatloski, R.P. et al., 2002. Dissolution of cellose with ionic liquids. Journal of the American Chemical Society, 124(18), pp.4974–4975.

Taylor, M.C. et al., 1940. Sodium Hypochlorite Properties and Reactions. Ind. Eng. Chem., 32(7), pp.899–903.

Varshney, V.K. & Naithani, S., 2011. Cellulose Fibers: Bio- and Nano-Polymer Composites. , pp.43–61. Available at: http://link.springer.com/10.1007/978-3-642-17370-7.

Zhang, D. et al., 2012. Optimization of dilute acid-catalyzed hydrolysis of oil palm empty fruit bunch for high yield production of xylose. Chemical Engineering Journal, 181, pp.636–642.

Zianor Azrina, Z.A. et al., 2017. Spherical nanocrystalline cellulose (NCC) from oil palm empty fruit bunch pulp via ultrasound assisted hydrolysis. Carbohydrate Polymers, 162(17), pp.115–120. Available at: http://dx.doi.org/10.1016/j.carbpol.2017.01.035.

Zuluaga, R. et al., 2009. Cellulose microfibrils from banana rachis: Effect of alkaline treatments on structural and morphological features. Carbohydrate Polymers, 76(1), pp.51–59.

Article Metrics

Abstract view : 31 times
PDF view : 7 times


  • There are currently no refbacks.

Copyright (c) 2018 JURNAL SELULOSA
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.