Luciasih Agustini(1*), Ragil S.B Irianto(2), Maman Turjaman(3), Sarah Asih Faulina(4), Resti Ariantari(5), Sira Stephandra(6), Herni Yuniar(7), Aryanto Aryanto(8), Najmulah Najmulah(9), Ahmad Yani(10)
(1) Pusat Penelitian dan Pengembangan Hutan
(2) Pusat Penelitian dan Pengembangan Hutan
(3) Pusat Penelitian dan Pengembangan Hutan
(4) Pusat Penelitian dan Pengembangan Hutan
(5) Pusat Penelitian dan Pengembangan Hutan
(6) Pusat Penelitian dan Pengembangan Hutan
(7) Pusat Penelitian dan Pengembangan Hutan
(8) Pusat Penelitian dan Pengembangan Hutan
(9) Pusat Penelitian dan Pengembangan Hutan
(10) Pusat Penelitian dan Pengembangan Hutan
(*) Corresponding Author


The effects of media, pH and temperature on cellulase-complex enzyme produced by Pycnoporus sp. FORDACC-03452 and Phlebiopsis sp. FORDACC-02482 cultivated in rice bran and corn cobs media under solid state fermentation with pH 4–7 and temperature 30°C–45°C were investigated. Rice bran media showed a propensity to induce endo-β,1,4-glucanase and cellobiohydrolase productions, while corn cobs media induce β-glucosidase production. However, the mixture of rice bran and corn cobs did not result in better cellulase complex enzyme activities. Cellulase-complex produced by Pycnoporussp. showed superior activities compared to those produced by Phlebiopsissp. Crude enzyme of Pycnoporus sp. showed optimum specifc-activities of endo-β-1,4-glucanase at pH 6, temperature 35°C (0.403 ± 0.010 IU/mg), cellobiohydrolase at pH 6, temperature 40°C (0.540 ± 0.020 IU/mg) and β-glucosidase at pH 4, temperature 30 °C (0.022 ± 0.001 IU/mg). While Phlebiopsis sp. showed optimum specifc-activities of endo-β-1,4-glucanase at pH 6, temperature 35°C (0.202 ± 0.005 IU/mg), cellobiohydrolase at pH 4, temperature 45°C (0.180 ± 0.002 IU/mg) and β-glucosidase at pH 6, temperature 45°C (0.007 ± 0.001 IU/mg). Due to low β-glucosidase activities, the cellulase-complex generated from this study were not able to completely hydrolyse lignocellulosic waste and yielded unsufficient sugars content. Further investigation to optimize cellulase-complex production from these fungal isolates is still required.


Penelitian pengaruh media kultivasi, pH dan suhu inkubasi terhadap produksi enzim selulase-kompleks dari Pycnoporus sp. FORDACC-03452 dan Phlebiopsis sp. FORDACC-02482 yang ditumbuhkan di media dedak padi dan tongkol jagung dengan metode kultur padat pada variasi pH 4–7 dan suhu 30°C–45°C, telah dilakukan. Hasil memperlihatkan bahwa media dedak padi cenderung menginduksi produksi endo-β-1,4-glukanase dan selobiohidrolase, sedangkan media tongkol jagung menginduksi produksi β-glukosidase. Namun, campuran kedua substrat tersebut tidak menghasilkan aktivitas selulase yang lebih baik. Selulase-kompleks yang dihasilkan Pycnoporus sp. menunjukkan aktivitas lebih baik dibandingkan dengan yang diproduksi Phlebiopsis sp. Filtrat kasar Pycnoporus sp. menunjukkan aktivitas-spesifk endo-β-1,4-glukanase optimum pada pH 6, suhu 35°C (0,403 ± 0,010 IU/mg); selobiohidrolase pada pH 6, suhu 40°C (0,540 ± 0,020 IU/mg); dan β -glukosidase pada pH 4, suhu 30°C (0,022±0,001 IU/mg). Sementara, Phlebiopsis sp. menunjukkan aktivitas-spesifk endo-β-1,4-glukanase optimum pada pH 6, suhu 35°C (0,202 ± 0,005 IU/mg); selobiohidrolase pada pH 4, suhu 45°C (0,180 ± 0,002 IU/mg); dan β-glukosidase pada pH 6, suhu 45°C (0,007 ± 0,001 IU/mg). Rendahnya aktivitas β-glukosidase menyebabkan selulase-kompleks dari penelitian ini belum dapat menghidrolisis limbah lignoselulosa dengan sempurna dan kadar glukosa yang diperoleh masih rendah. Oleh karena itu, optimasi produksi selulasekompleks dari Pycnoporus sp. dan Phlebiopsis sp. masih perlu diteliti lebih lanjut.


Pycnoporus sp., Phlebiopsis sp., endo-β-1,4-glukanase, selobiohidrolase, β-glukosidase

Full Text:



Adrio, J. L. and Demain, A. L. (2014) ‘Microbial Enzymes: Tools for Biotechnological Processes’, Biomolecules, 4, pp. 117–139. doi: 10.3390/biom4010117.

Ang, S. K. et al. (2013) ‘Production of cellulases and xylanase by Aspergillus fumigatus SK1 using untreated oil palm trunk through solid state fermentation’, Process Biochemistry. Elsevier Ltd, 48(9), pp. 1293–1302. doi: 10.1016/j.procbio.2013.06.019.

Anish, R., Rahman, M. S. and Rao, M. (2007) ‘Application of cellulases from an alkalothermophilic Thermomonospora sp. in biopolishing of denims’, Biotechnology and Bioengineering, 96(1), pp. 48–56. doi:10.1002/bit.21175.

Artika, A. (2010) Kajian hidrolisis tongkol jagung oleh kapang selulolitik menggunakan kultivasi media padat untuk produksi pakan. Institut Pertanian Bogor. Banerjee, G., Scott-Craig, J. S. and Walton, J.D. Z2010) ‘Improving enzymes for biomass conversion: A basic research perspective’, Bioenergy Research, 3(1), pp. 82–92. doi:10.1007/s12155-009-9067-5.

Banerjee, S. et al. (2010) ‘Commercializing lignocellulosic bioethanol: Technology bottlenecks and possible remedies’, Biofuels, Bioproducts and Biorefning, 4(1), pp. 77–93. doi: 10.1002/bbb.188.

Bertrand, B. et al. (2015) ‘Biochemical and molecular characterization of laccase isoforms produced by the white-rot fungus Trametes versicolor under submerged culture conditions’, Journal of Molecular Catalysis B: Enzymatic, 122(October), pp. 339–347.

doi: 10.1016/j.molcatb.2015.10.009. Bhavsar, N. H. et al. (2015) ‘Optimization and Characterization of Fungal Cellulase for Enzymatic Saccharifcation of Lignocellosic Agro-waste’, International Journal of

Current Microbiology and Applied Sciences, 4(3), pp. 30–46.

Bisswanger, H. (2014) ‘Enzyme assays’, Perspectives in Science. Elsevier, 1(1–6), pp. 41–55. doi: 10.1016/j.pisc.2014.02.005.

Chokhawala, H. A. et al. (2015) ‘Mutagenesis of Trichoderma reesei endoglucanase I: impact of expression host on activity and stability at elevated temperatures’, BMC Biotechnol, 15, p. 11. doi: 10.1186/s12896-015-0118-z.

Chuwech, M. et al. (2015) ‘Utilization of pretreated corn-cobs for optimized bioproduction of cellulase by Pycnoporus coccineus’, in Proceeding of The 6th International Conference on Fermentation Technology for Value Added Agricultural Products, pp. 236–242.

Fahrurrozi, F. et al. (2010) ‘Rapid Assessment of Diverse Trichodermal Isolates of Indonesian Origin for Cellulase Production’, Annales Bogorienses, 14(1), pp. 39–44.

Falkoski, D. L. et al. (2012) ‘Characterization of cellulolytic extract from Pycnoporus sanguineus PF-2 and its application in biomass saccharifcation’, Applied Biochemistry and Biotechnology, 166(6), pp. 1586–1603. doi: 10.1007/s12010-012-9565-3.

Fang, H. and Xia, L. (2015) ‘Cellulase production by recombinant Trichoderma reesei and its application in enzymatic hydrolysis of agricultural residues’, Fuel. Elsevier Ltd, 143(March), pp. 211–216. doi: 10.1016/j.fuel.2014.11.056.

Goyal, M. and Soni, G. (2011) ‘Production and characterization of cellulolytic enzymes by Pleurotus florida’, Journal of Microbiology, 5(10), pp. 1131–1136. doi: 10.5897/AJMR10.192.

Gurung, N. et al. (2013) ‘A broader view: Microbial enzymes and their relevance in industries, medicine, and beyond’, BioMed Research International, 2013. doi:10.1155/2013/329121.

Gutiérrez-Soto, G. et al. (2015) ‘Selection and characterization of a native Pycnoporus sanguineus strain as a lignocellulolytic extract producer from submerged cultures of various agroindustrial wastes’, BioResources, 10(2), pp. 3564–3576. doi:10.15376/biores.10.2.3564-3576.

Kavitha, S. and Sivamani, S. (2016) ‘Statistical Optimization of Cellulase Production from Cassava Stem by Cellulomonas Fimi MTCC24 using Box-Behnken Design’, 4(November), pp. 375–385.

Kuhad, R. C. et al. (2011) ‘Bioethanol production from pentose sugars: Current status and future prospects’, Renewable and Sustainable Energy Reviews. Elsevier Ltd, 15(9), pp. 4950–4962. doi: 10.1016/j.rser.2011.07.058.

Kuhad, R. C., Gupta, R. and Sing, A. (2011) ‘Microbial cellulases and their industrial applications.’, Enzyme research, 2011, p. 280696. doi: 10.4061/2011/280696.

Kumar, A. K. and Parikh, B. S. (2015) ‘Cellulosedegrading enzymes from Aspergillus terreus D34 and enzymatic saccharifcation of mildalkali and dilute-acid pretreated lignocellulosic biomass residues’, Bioresources and Bioprocessing, 2(1). doi: 10.1186/s40643-015-0038-8.

Liming, X. and Xueliang, S. (2004) ‘High-yield cellulase production by Trichoderma reesei ZU-02 on corn cob residue’, Bioresource Technology, 91(3), pp. 259–262. doi: 10.1016/S0960-8524(03)00195-0.

Meryandini, A. et al. (2009) ‘Isolasi bakteri selulolitik dan karakterisasi enzimnya’, Makara Sains, 13(1), pp. 33–38. doi: 10.7454/mss.v13i1.369.

Miller, G. L. (1959) ‘Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar’, Analytical Chemistry, 31(3), pp. 426–428. doi: 10.1021/ac60147a030.

Mingardon, F. et al. (2011) ‘The issue of secretion in heterologous expression of Clostridium cellulolyticum cellulase-encoding genes in Clostridium acetobutylicum ATCC 824’, Applied and Environmental Microbiology, 77(9), pp. 2831–2838. doi: 10.1128/AEM.03012-10.

Mohanram, S. et al. (2013) ‘Novel perspectives for evolving enzyme cocktails for lignocellulose hydrolysis in biorefneries’, Sustainable Chemical Processes, 1(1), p. 15. doi:10.1186/2043-7129-1-15.

Mutreja, R. et al. (2011) ‘Bioconversion of agricultural waste to ethanol by SSF using recombinant cellulase from Clostridium thermocellum.’, Enzyme research, 2011, pp. 1–6. doi: 10.4061/2011/340279.

Mutschlechner, M., Illmer, P. and Wagner, A. O. (2015) ‘Biological pre-treatment: Enhancing biogas production using the highly cellulolytic fungus Trichoderma viride’, Waste Management. Elsevier Ltd, 43(May), pp. 98–107. doi: 10.1016/j.wasman.2015.05.011.

Naufala, W. and Pandebesie, E. S. (2015) ‘Hidrolisis Eceng Gondok dan Sekam Padi untuk Menghasilkan Gula Reduksi sebagai Tahap Awal Produksi Bioetanol’, Jurnal Teknis ITS, 4(2), pp. 2–6.

Ncube, T. et al. (2012) ‘Jatropha curcas seed cake as substrate for production of xylanase and cellulase by Aspergillus niger FGSCA733 in solid-state fermentation’, Industrial Crops and Products, 37(1), pp. 118–123. doi:10.1016/j.indcrop.2011.11.024.

Oktavia, Y. et al. (2014) ‘Karakterisasi Enzim Kasar Selulase Kapang Endoft dari Lamun’, Jurnal Ilmu dan Teknologi Kelautan Tropis, 6(1), pp. 219–228. doi: 10.3724/SP.J.1041.2014.01463.

Olson, D. G. et al. (2012) ‘Recent progress in consolidated bioprocessing’, Current Opinion in Biotechnology. Elsevier Ltd, 23(3), pp. 396–405. doi: 10.1016/j.copbio.2011.11.026.

Pribowo, A., Arantes, V. and Saddler, J. N. (2012) ‘The adsorption and enzyme activity profles of specifc Trichoderma reesei cellulase/xylanase components when hydrolyzing steam pretreated corn stover’, Enzyme and Microbial Technology. Elsevier Inc., 50(3), pp. 195–203. doi: 10.1016/j.enzmictec.2011.12.004.

Quiroz-Castañeda, R. E. et al. (2009) ‘Characterization of cellulolytic activities of Bjerkandera adusta and Pycnoporus sanguineus on solid wheat straw medium’, Electronic Journal of Biotechnology, 12(4).

doi: 10.2225/vol12-issue4-fulltext-3.

Rana, I. S. and Rana, A. S. (2011) ‘Lignocellulolytic enzyme profle of Agaricus and Pleurotus species cultured on used tea leaves substrate’, Advanced Biotech., 11(6), pp. 10–14. Rochman, A. (2015) ‘Perbedaan Proporsi Dedak Dalam Media Tanam Terhadap Pertumbuhan Jamur Tiram Putih (Pleurotus florida)’, Jurnal Agribisnis Fakultas Pertanian Unita, 11(13), pp. 56–67.

Selbmann, L. et al. (2013) ‘Biodiversity, evolution and adaptation of fungi in extreme environments’, Plant Biosystems – An International Journal Dealing with all Aspects of Plant Biology, 147(1), pp. 237–246. doi:10.1080/11263504.2012.753134.

Setyaningsih, A., Zaenab, S. and Hudha, A. . (2015) ‘Pengaruh Penambahan Tepung Tongkol Jagung pada Media Tanam terhadap Berat Basah Jamur Tiram Putih (Pleurotus ostreatus) sebagai Bahan Ajar Biologi’, in Seminar Nasional Pendidikan Biologi: ‘Peran Biologi dan Pendidikan Biologi dalam Menyiapkan Generasi Unggul dan Berdaya Saing Global’. Malang, 21 Maret 2015: FKIP Universitas

Muhammadiyah Malang, pp. 403–409.

Sindhu, R., Binod, P. and Pandey, A. (2016) ‘Biological pretreatment of lignocellulosic biomass - An overview’, Bioresource Technology. Elsevier Ltd, 199, pp. 76–82. doi: 10.1016/j.biortech.2015.08.030.

Singhania, R. al.(2013) ‘Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production’, Bioresource Technology, 127, pp. 500–507. doi: 10.1016/j.biortech.2012.09.012.

Sun, S. et al. (2016) ‘The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials’, Bioresource Technology. Elsevier Ltd, 199(January), pp. 49–58. doi:10.1016/j.biortech.2015.08.061.

Ul-Haq, I. et al. (2005) ‘Cotton Saccharifying Activity of Cellulases Produced by Coculture of Aspergillus niger and Trichoderma viride’, Journal of Agriculture and Biological Sciences, 1(3), pp. 241–245.

Vishwakarma, R. and Banerjee, R. (2016) ‘Enhancement of sugar content of Cyperus sp. Through cellulolytic enzymes for bioethanol generation’, Lignocellulose, 5(2), pp. 94–105.

Waterborg, J. H. (2002) ‘The Lowry Method for Protein Quantitation’, in Walker, J. M. (ed.) The Protein Protocols Hanbook. XXIV, pp. 2–4.

Xu, J. et al. (2015) ‘Enzymatic in situ saccharifcation of rice straw in aqueousionic liquid media using encapsulated Trichoderma aureoviride cellulase’, Journal of Chemical Technology and Biotechnology, 90(1), pp. 57–63. doi: 10.1002/jctb.4458.

Yuan, S.-F. et al. (2015) ‘Biochemical characterization and structural analysis of a bi-functional cellulase/xylanase from Clostridium thermocellum.’, The Journal of biological chemistry, 290(9), pp. 5739–5748. doi: 10.1074/jbc.M114.604454.

Zhang, J. et al. (2010) ‘Development of the cellulolytic fungus Trichoderma reesei strain with enhanced β-glucosidase and flter paper activity using strong artifcal cellobiohydrolase 1 promoter’, Bioresource Technology. Elsevier Ltd, 101(24), pp. 9815–9818. doi: 10.1016/j.biortech.2010.07.078.

Article Metrics

Abstract view : 30 times
PDF view : 34 times


  • There are currently no refbacks.

Copyright (c) 2017 JURNAL SELULOSA
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.